УДК 547.246 XUMUS

О. М. НЕФЕДОВ, С. П. КОЛЕСНИКОВ, Б. Л. ПЕРЛЬМУТТЕР, А. И. НОФФЕ

О МЕХАНИЗМЕ ВНЕДРЕНИЯ ДИХЛОРГЕРМИЛЕНА — АНАЛОГА ЛИХЛОРКАРБЕНА В СВЯЗИ С — СІ

(Представлено академиком М. И. Кабачником 7 11 1973)

Дихлоргермилен, генерируемый диоксановым комплексом С. H. O. ·GeCl, (1), внедряется в связи С-Hal различных галоидорганических соединений с образованием соответствующих органотригалогерманов (1). В данной работе на примере реакций комплекса I с бензплулорилами RC₆H₄CH₂Cl (R=H, n-CH₃, n-Br, n-Cl, м-CF₃) изучен механизм внедрения GeCl₂ в связи C-Cl.

Предварительное изучение зависимости скорости реакции комплекса I с бензилхлоридом от концентрации компонентов показадо, что реакция

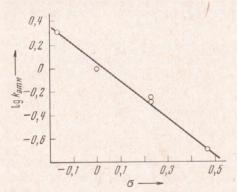


Рис. 1. Зависимость $\lg k_{\text{оти}}$ от σ -констант

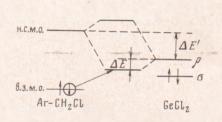


Рис. 2. Взаимодействие орбиталей дихлоргермилена и бензилхлоридов

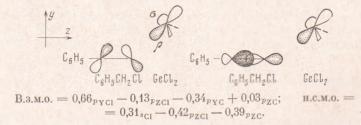


Рис. 3. Рассчитанная структура в.з.м.о. и н.с.м.о. бензилхлорида в области связи C-Cl

имеет первый порядок по бензилхлориду и зависит от концентрации комплекса в соответствии с уравнениями (1) и (2), причем лимитирующей является сталия (2):

$$C_{1}H_{8}O_{2} \cdot GeCl_{2} \underset{k_{-1}}{\overset{k_{1}}{\rightleftharpoons}} GeCl_{2} + C_{4}H_{8}O_{2}, \tag{1}$$

$$C_{6}H_{5}CH_{2}Cl + GeCl_{2} \xrightarrow{} C_{6}H_{5}CH_{2}GeCl_{3}. \tag{2}$$

$$C_6H_5CH_2Cl + GeCl_2 \xrightarrow{k_2} C_6H_5CH_2GeCl_3.$$
 (2)

Соединения RC ₆ 11 ₅ CH ₂ R ₃ 1		TD			С, %		H, %		Ge, %		Hal, %	
R	R¹	Т. кип., °С (мм рт. ст.)	$n_D^{20} d_4^{20}$	найдено	вычисле- но	найдено	вычисле-	найдено	вычисле- но	найдено	вычисле-	
n-CH ₃ n-Br n-Cl M-CF ₃ n-CH ₃ n-Br n-Cl M-CF ₃	Cl Cl Cl CH ₃ CH ₃ CH ₃	151 (25) 179 (23) 169 (27) 139 (29) 104 (20) 134 (20) 125 (23) 78 (10)	1,5787 1,5039 1,5110 1,5485 1,5299	1,4743 1,8283 1,6265 1,5820 1,0710 1,3959 1,2064 1,2302	24,68 29,02 58,91 41,56 49,90	30,89 24,09 27,60 59,20 41,74 49,37 47,72	1,91 2,19 - 7,71 5,15 6,21	3,34 4,74 1,98 - 8,15 5,25 6,21 5,46	25,03 20,11 22,87 21,56 33,74 25,08 29,87 26,11	26,68 20,80 23,84 21,47 32,57 25,23 29,84 26,22	38,39 52,51 46,12 48,25 	39,09 53,38 46,58 48,31

Поскольку характер зависимости относительных констант скорости от о-констант изменяющегося заместителя дает определенную информацию о механизме реакции, мы изучили сравнительную реакционную способность замещенных бензилхлоридов по отношению к комплексу І. Используемые для этой цели так называемые конкурирующие реакции проводили при 132° в течение 3 час. при мольном соотношении C₆H₅CH₂Cl (применялся во всех опытах в качестве стандарта), замещенного бензилхлорида и комплекса I, равном 10:10:1; растворителем служил хлорбензол (20 мл на 2,5 г 1). Специальными опытами было показапо, что в выбранных условиях I легко реагирует с бензилхлоридами с образованием соответствующих RC₆H₄CH₂GeCl₃ (выходы 80-95%), последние стабильны в условиях опытов, а растворитель инертен. Выходы образующихся в конкурирующих реакциях бензилтрихлоргерманов определяли методом г.ж.х. с использованием калибровочных графиков *. Затем реакционные смеси обрабатывали избытком CH₃MgBr в эфире и после обычной обработки и отгонки эфира вновь анализировали с помощью г.ж.х. При этом выходы RC₆H₄CH₂GeCl₃, определенные этими двумя путями, совпадали с точностью

до 1%. Из полученных данных были вычислены, согласно (2), относительные константы скорости, причем $k_{\text{отн}}$ С₆H₅CH₂Cl была принята за 1 (см. табл. 1).

Зависимость значений $\lg k_{\text{отн}}$ от констант Гаммета показана на рис. 1 и выражается следующим уравнением $\lg k_{\text{отн}} = 0,0551-1,54$ о (коэффициент корреляции r = 0,995). Наклон прямой дает значение $\rho = -1,54 \pm 0,055$. Полученные данные свидетельствуют о том, что имеет место электрофильная атака дихлоргермилена на связь C-Cl, причем

Таблица 1
Относительные константы скорости реакции впедрения GeCl₂ в связи С—СI бензилхлоридов

Значение R в RC ₆ H ₄ CH ₂ Cl	Значение с заме- стителя согласно (a)	k _{OTH}
n-CH ₃ H n-Cl n-Br м-CF ₃	$\begin{bmatrix} -0.17 \\ 0.00 \\ 0.23 \\ 0.23 \\ 0.47 \end{bmatrix}$	2,08 1,00 0,55 0,52 0,20

в переходном состоянии происходит некоторое разделение зарядов с δ⁺ на ациклическом С-атоме молекулы RC₆H₄CH₂Cl. Свойства п данные анализа полученных бензилтрихлоргерманов п бензилтриметилгерманов приведены в табл. 2.

Далее нами был проведен квантовохимический расчет *п*-замещенных бензилхлоридов в рамках расширенного мехода Хюккеля (4), который

^{*} Анализ г.ж.х. проводили на хроматографе ЛХМ-8МД; стальная колонка 200×0.3 см с 45% СКТФ ФТ-100 на силанизированном хромосорбе — W, $100-130^\circ$, газноситель He.

Квантовохимические параметры n-замещенных бензилхлоридов и их корреляции с $\lg k_{\text{отн}}$

Параметры бензилхлоридов		Коэфф.				
$n ext{-RC}_0 ext{H}_4 ext{CH}_2 ext{CI}$	CH ₃	Н	CI	Br	ции c lg k _{отн}	
lg k _{OTH}	0,318	0.000	-0,260	-0,284		
Заряд на атоме Cl	-0,219	-0,217	-0,228	-0,227	0,827	
Заряд на атоме С	-0,069	0,007	0,063	0,062	0,867	
Порядок связи С—С1	0,566	0,619	0,621	0,621	0,920	
Эпергия в.з.м.о., цептрированной на связи С—С1, эв.	-12,193	-12,237	-12,139	-12,015	0,703	
Энергия п.с.м.о., центрированной па связи С—С1, эв.	2,827	3,459	3,814	3,815	0,993	
Энергия возбуждения связи С—Сl. эв.	15,120	15,696	15,953	15,929	0,947	
Относительная энергия гомолитического разрыва связи С—С1, ккал/моль	1,3	0	5,6	23,6	0,660	

указал на «превосходную» (r=0.993) корреляцию $\lg k_{\text{отн}}$ с энергией нижней свободной м.о. (н.с.м.о.), центрированной на связи C-Cl. При этом другие расчетные параметры реакционного центра, так же как и энергия гомолитического разрыва связи C-Cl, показывают в лучшем случае лишь «удовлетворительную» корреляцию $clg k_{\text{отн}}$ (табл. 3).

Очевидно, весь набор экспериментальных и расчетных данных может быть интериретирован с учетом правил пространственного взаимодействия орбиталей (5). Так, в переходном состоянии рассматриваемой реакции н.с.м.о. бензилхлорида взаимодействует с вакантной p-орбиталью дихлоргермилена, стабилизируя последнюю; этот процесс сопровождается переносом электрона на стабилизированную орбиталь и перестройкой структуры реагентов (рис. 2). При этом стабилизация вакантной p-орбитали дихлоргермилена ΔE обратио пропорциональна разности энергии этой орбитали и п.с.м.о. $\Delta' E$, что и объясняет найдепную корреляцию.

Предположение о преимущественном взаимодействии *p*-орбитали дихлоргермилена с н.с.м.о., а не с верхней занятой м. о. (в.з.м.о.) подтверждается и анализом симметрии последних. При этом геометрия переходного состояния принималась сходной с рассчитанной для внедрения метилена в С—Н-связь (в). Из рис. З видно, что перекрывание *p*-орбитали дихлоргермилена в переходном состоянии может быть достигнуто лишь с н.с.м.о. Введсиие заместителей не изменяет структуру н.с.м.о. и в.з.м.о. бензил-хлоридов.

Институт органической химин им. Н. Д. Зелинского Академии наук СССР Москва

Поступило 20 I 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. П. Колесников, Б. Л. Перльмуттер, О. М. Нефедов, ДАН, 196, 594 (1971). ² W. von E. Doering, W. A. Henderson, J. Am. Chem. Soc., 80, 5274 (1958). ³ G. B. Barlin, D. D. Perrin, Quart. Rev. (London), 20, 75 (1966). ⁴ R. Hoffman, J. Chem. Phys., 39, 1397 (1963). ⁵ R. Hoffman, Acc. Chem. Res., 4, 1 (1971). ⁶ R. C. Dobson, D. M. Hayls, R. Hoffman, J. Am. Chem. Soc., 93, 6188 (1971).