УДК 547.558.6 + 546.48

ХИМИЯ

Академик Г. А. РАЗУВАЕВ, В. Т. БЫЧКОВ, Н. С. ВЯЗАНКИН

СИНТЕЗ И СВОЙСТВА НЕСИММЕТРИЧНЫХ И СМЕШАННЫХ ГЕРМИЛКАДМИЕВЫХ СОЕДИНЕНИЙ

В стличие от хорошо известных несимметричных гермилртутных соединений типа R_3GeHgR' ($^{1-3}$) аналогичные герилкадмиевые соединения ранее не были описаны. Синтез этих соединений взаимодействием эквимольных количеств диэтилкадмия с трифенилгерманом и триэтилгерманов в отсутствие растворителей, а также в среде таких растворителей, как диметиловый эфир диэтиленгликоля (ДИГЛИМ) или гексаметилфосфотриамида ($\Gamma M\Phi TA$), приводит к продуктам симметричного строения (табл. 1).

Такое направление реакций можно объяснить или легкостью симметризации несимметричных герилкадмиевых соединений и их комплексов с кислородсодержащими лигандами (уравнение (1а)), или тем, что скорость замещения второй этильной групы (уравнение (1б)) может быть боль-

ше первой.

$$(C_{2}H_{5})_{2}Cd \cdot D + R_{3}GeH \rightarrow C_{2}H_{5}CdGeR_{3} \cdot D + C_{2}H_{6}$$

$$(1)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

 $^{1/2}$ (C_2H_5) $_3Cd\cdot D+^{1/2}$ (R_3Ge) $_2Cd\cdot D$ (R_3Ge) $_2Cd\cdot D+G_2H_6$ R= C_2H_5 , C_6H_5 ; R= C_6H_5 , D=ДИГЛИМ, ГМФТА.

Метод синтеза подобных комплексов описан в работе (*), причем было показано, что комплексы $R_2M \cdot D$ (M = Zn, Cd) реагируют с трифенилгерманом и трифенилстаннаном в более мягких условиях, чем несольватированные диалкильные производные Zn и Cd. Мы нашли, что в присутствии N,N,N',N'-тетраметилэтилендиамина ($TM \ni J$) диэтилкадмий реагирует при 40° с эквимольным количеством трифенилгермана преимущественно по уравнению (1) с образованием этана и комплекса $C_2H_5CdGe(C_6H_5)_3 \cdot TM \ni J$ (I). При более высокой температуре (90°), несмотря на эквимольное соотношение реагентов, продуктами взаимодействия являются этан (100%) и комплекс [$(C_6H_5)_3Ge]_2Cd \cdot TM \ni J$ * (II) (100%), причем часть диэтилкадмия (100%) в реакцию не вступает.

На основании этих наблюдений можно предположить, что симметричные гермилкадмиевые соединения образуются преимущественно по уравнению (1а), а не за счет последовательного замещения этильных групп в диэтилкадмии (уравнение (1б)). Исследование несимметричных соединений, подобных комплексу I, интересно в том отношении, что дает возможность сравнить относительную реакционную способность С — Cd-и Ge — Cd-связей. Так, взаимодействие комплекса I с эквимольным количеством ледяной уксусной кислоты происходит с гетеролизом только Cd — С-связи. При этом наряду с этаном (81%) образуется соединение (С₆Н₅) з · GeCdOCOCH₃·ТМЭД (III) (86%; бесцветные кристаллы с т. разл. 170—175°).

Найдено %: С 52,66; Н 5,19; Сd 19,27; Ge 13,09 $C_{26}H_{34}CdGeO_2N_2$. Вычислено %: С 52,79; Н 5,78; Сd 19,00; Ge 12,27

 $C_2H_5CdGe(C_6H_5)_3 \cdot TMЭД + CH_3COOH \xrightarrow{20^\circ} C_2H_6 + (C_6H_5)_3GeCdOCOCH_3 \cdot TMЭД.$ (2)

^{*} Синтез комплекса II был описан в работе (4).

Условия синтеза, выходы, температуры разложения и данные анализа гермилкадмиевых соединений

Таблица 1

Реагенты (мол. соотношение 1:1)		Раствори- тель	т, °C Продолж.,		Продукты реакции	Выход,	Т. разл., °С	Сd, % найдено вычислено		Выход, %
[(C ₂ H ₅) ₃ Ge] ₂ Cd	CdCl ₂	Толуол	80	10	$(C_2H_5)_3GeCdCl$	82	8085	36,20	36,25	
	CdBr ₂	»	80	20	(C ₂ H ₅) ₃ GeCdBr	76	82-84	31,60	31,92	
	CdJ_2	*	70	10	$(C_2H_5)_3G_\Theta CdJ$	70	65	28,50	28,16	
$[(C_6\mathbf{H}_5)_3\mathrm{Ge}]_2\mathrm{Cd}$	CdCl ₂	»	100	180	(C₃H₅)₃GeCdCl	63	120—122	24,29	24,92	
[(C ₆ H ₅) ₃ Ge] ₂ Cd · ТМЭД	C_2H_5Br	»	80	60	(C₃H₅)₃G aCdBr · ТМЭД *	72	210-215	18,09	18,35	$(C_6H_5)_3GeC_2H_5$; 66
(C ₆ H ₅) ₃ GeH	$(C_2H_5)_2Cd$	тмэд	40	120	$(C_3H_5)_3\mathrm{GeCdC}_2\mathrm{H}_5\cdot\mathrm{TM}$ ЭД **	62	175—180	19,37	20,01	C ₂ H ₆ ; 100
	$(C_2H_5)_2Cd$	диглим	90	40	(C ₆ H ₅) ₃ Ge ₂ Cd · ДИГЛИМ ***	70	145-147	12,83	13,15	C ₂ H ₆ ; 90
	(C ₂ H ₅) ₂ Cd	ГМФТА	25	120	$(C_8H_5)_8G_{22}Cd\cdot\Gamma M\Phi TA$	64	125130	12,15	12,36	C ₂ H ₆ ; 82
					Maria de la companya			11		

^{. *} Найдено %: С 46,99; H 5,32; Br 12,41; Ge 11,84. Вычислено %: С 47,07; H 5,09; Br 13,04; Ge 11,85.

^{**} Найдено %: C 55,54; H 6,22; Ge 12,17. Вычислено %: C 55,61; H 6,46; Ge 12,93.

^{***} Найдено %: C 58,25; H 5.16; Ge 16,05. Вычислено %: C 59,04; H 5,18; Ge 19,99.

Соединение III паряду с трифенилгерманом образуется также при взаимодействии комплеска II с эквимольным количеством ледяной уксусгой кислоты. Выходы этих продуктов соответственно равны 65 и 88%.

$$[(C_6H_5)_3Ge]_2Cd\cdot TM\ni \mathcal{I}_+ CH_3COOH\xrightarrow{50-60^\circ} (C_6H_5)_3GeCdOCOCH_3\cdot TM\ni \mathcal{I}_+ (C_6H_5)_3GeH. \tag{3}$$

С избытком уксусной кислоты комплекс III реагирует (3 часа, 80°) с образованием трифепилгермана (93%) и Cd (OCOCH₃)₂·ТМЭД (90%). Бесцветные кристаллы, умеренно растворимые в толуоле. Т. пл. $108-410^{\circ}$.

Найдено %: Cd 32,18 С₁₀Н₂₂CdO₄N₂. Вычислено %: Cd 32,42

$$(C_0H_5)_3GeCdOCOCH_3 \cdot TMJJ + CH_3COOH \rightarrow (C_0H_5)_3GeH + Cd(OCOCH_3)_2 \cdot TMJJ.$$
 (4)

Взаимодействие соединения $C_2H_5CdGe(C_6H_5)_3 \cdot TMЭД$ (I) с избытком воды в растворе толуола (5 час. при 110°) проходит с расщеплением Ge-Cd-u Cd-C-связей и образованием этана (100%) трифенилгермана (75%) и $Cd(OH)_2$ (80%):

$$C_2H_5CdGe(C_6H_5)_3 \cdot TMЭД + 2 H_2O \xrightarrow{-TMЭД} C_2H_6 + (C_6H_5)_3GeH + Cd(OH)_2.$$
 (5)

Что касается смешанных гермилкадмиевых соединений типа R_3 GeCdX (X = CI, Br, J), то они могут быть получены двумя методами. Раннее было показано, что эти соединения образуются как промежуточные или конечные продукты в реакциях бис-(триэтилгермил)-кадмия с галондными алкилами (5 , 6). Подобным образом реагирует с бромистым этилом комплекс II, образуя трифенилэтилгерман и (C_6H_5) $_3$ GeCdBr · TMЭД:

$$[(C_6H_5)_3Ge]_2Cd\cdot TM\partial \mathcal{I} + C_2H_5Br \rightarrow (C_6H_5)_3GeCdBr\cdot TM\partial \mathcal{I} + (C_6H_5)_3GeC_2H_5.$$
 (6)

Мы нашли, что более удобным методом синтеза смешанных соединений является взаимодействие бис-(триэтилгермил)-кадмия или его фенильного аналога с галогенидами кадмия (табл. 1)

$$(R_3Ge)_2Cd + CdX_2 \rightarrow 2 R_3GeCdX$$
 (7)
 $R=C_2H_5; X=Cl, Br, J; R=C_6H_5; X=Cl.$

Эти реакции в растворе толуола проходят в довольно мягких условиях и не осложняются побочными процессами.

Попытки получить аналогичным образом соответствующие ртутные аналоги были безуспешны, так как R_3 GeHgX-соединения являются неустойчивыми и распадаются в момент образования на ртуть и R_3 GeX (7 , 8).

Все R_3 GeCdX-соединения являются бесцветными кристаллическими веществами, чувствительными к кислороду. Этильные соединения термически мало устойчивы, причем их стабильность заметно уменьшается от иодида к хлориду. Фенильные соединения более устойчивы, чем этильные. Комплексообразование в значительной степени повышает стабильность соединения. Так, комплекс $(C_6H_5)_3$ GeCdBr · TMЭД разлагается при $210-215^\circ$.

Распад R₃GeCdX-соединений в толуоле проходит по уравнению (8) с образованием кадмия и германийорганического галогенида (табл. 2):

$$R_3GeCdX \rightarrow R_3GeX + Cd$$

$$R=C_2H_5; X=Cl, Br, J; R=C_6H_5; X=Cl.$$
(8)

В тетрагидрофуране ($T\Gamma\Phi$) взаимодействие бис-(триэтилгермил)-кадмия с CdJ_2 проходит значительно легче, чем в толуоле (~ 1 час при 20°). Однако (C_2H_5) $_3GeCdJ$ в $T\Gamma\Phi$ неустойчив и распадается в процессе выделения. Специально поставленными опытами было показано, что распад (C_2H_5) $_3GeCdJ$ в $T\Gamma\Phi$ и диэтиловом эфире проходит значительно легче, чем в толуоле.

Вероятно, ТГФ, эфир и, как было показано ранее (5), метанол оказывают каталитическое влияние на разложение (C_2H_5) $_3$ GeCdX-соединений. Подобный каталитический эффект оказывают вещества типа эфиров и аминов на распад (C_2H_5) $_3$ GeHgOGe(C_2H_5) $_3$ (9).

Таблица 2 Условия и продукты распада гермилкад**м**иевых соединений

an en open a	Услови	ія распада	21/2011	Выход, %				
Вещество	T, °C	продолж., час.	Раств орите ль	Cd	R ₃ GeX			
(C ₂ H ₅) ₃ GeCdCl (C ₂ H ₅) ₃ GeCdBr * (C ₂ H ₅) ₃ GeCdJ (C ₆ H ₅) ₃ GeCdCl (C ₂ H ₅) ₃ GeCdJ (C ₂ H ₅) ₃ GeCdJ [(C ₂ H ₅) ₃ Ge] ₂ Cd [(C ₂ H ₅) ₃ Ge] ₂ Cd	100 100 100 120 100 100 150 150	1 2 10 3 0,5 0,5 15 15	Толуол Гексан Толуол » ТГФ Эфир Толуол Кумол	100 91 100 100 100 97 100 100	$ \begin{array}{c c} X = CI \\ X = Br \\ X = J \\ X = CI \\ X - J \\ X = J \\ X = (C_2H_5)_3Ge \\ X = (C_2H_5)_3Ge \end{array} $	77 71 80 68 78 84 90 93		

^{*} По данным работы (*).

Термическое разложение бис-(триэтилгермил)-кадмия в толуоле и кумоле проходит с образованием кадмия и гексаэтилдигермана. Судя по отсутствию триэтилгермана и других германийсодержащих продуктов взаимодействия с растворителем не происходит.

Институт химии Академии наук СССР Горький Поступило 22 I 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. С. Вязанкин, Е. Н. Гладышев и др., ЖОХ, 38, 1803 (1968). ² N. S. Vуаzankin, Е. N. Gladyschev et al., J. Organomet. Chem., 17, 340 (1969). ³ Н. С. Вязанкин, Е. Н. Гладышев и др., ДАН, 186, 1082 (1969). ⁴ Г. J. A. des Tombe, G. J. M. van der Kerk et al., J. Organomet. Chem., 44, 247 (1972). ⁵ N. S. Vyazankin, V. T. Bychkov et al., J. Organomet. Chem., 31, 311 (1971). ⁶ В. Т. Бычков, Н. С. Вязанкин и др., ДАН, 202, 593 (1972). ⁷ А. G. Lee, J. Organomet. Chem., 16, 321 (1969). ⁸ О. А. Круглая, Б. И. Петров, Н. С. Вязанкин, Изв. АН СССР, сер. хим., 1970, 2413. ⁹ Г. А. Разуваев, Ю. А. Александров и др., ЖОХ, 39, 2499 (1969).