УДК 517.55

MATEMATUKA

9. M. CAAK

ОБ ОГРАНИЧЕННОСТИ НЕКОТОРЫХ ИНТЕГРАЛЬНЫХ ОПЕРАТОРОВ

(Представлено академиком И. Н. Векуа 24 Х 1972)

В работе устанавливается ограниченность в L_p , 1 , некоторых ортогональных проекторов. При этом используется метод, который легко понять на приводимом ниже простом доказательстве одной важной и хорошо известной (1) теоремы М. Рисса.

Теорема (М. Рисс). Справедливо неравенство

$$\int_{|t|=1} \left| \int_{|\tau|=1} f(\tau) \frac{d\tau}{\tau - t} \right|^p |dt| \leqslant M_p \int_{|t|=1} |f(t)|^p |dt|, \tag{1}$$

где M_p , 1 , не зависит от (комплексной суммируемой) функции <math>f(t) комплексного переменного t, а внутренний интеграл слева понимается в смысле главного значения по Коши.

Доказательство. Рассмотрим пространства H_p (определение см. в (¹)). Они рефлексивны. Поэтому тотальная над H_p система функционалов вида

$$\int\limits_{|t|=1}f(t)\,\overline{\phi(t)}\,|\,dt\,|,$$
 где $f\!\in\!H_p,$ $\phi\!\in\!H_q,$ $\frac{1}{p}+\frac{1}{p}=1,$

образует плотное множество в сопряженном к H_p пространстве H_p . Следовательно, H_q изоморфно H_p .

Положим

$$L_p = \left\{ f(t): \int_{|t|=1} |f(t)|^p |dt| < \infty \right\},$$

$$Kf(t) = \frac{1}{2\pi i} \int_{\tau} \int_{\tau=1}^{\infty} f(\tau) \frac{d\tau}{\tau - t}, \quad |t| < 1.$$

Нетрудно убедиться, что оператор K ортогонально проектирует L_2 на H_2 . В силу доказанного изоморфизма H_q^* и H_p , 1/p+1/q=1, имеем теперь

$$\int_{|t|=1} f(t) \overline{\varphi(t)} |dt| = \int_{|t|=1} Kf(t) \overline{\varphi(t)} |dt|,$$

где $f(t) \in L_p$, а $\varphi(t)$ — произвольный элемент из H_q . При этом $Kf \in H_p$ и

$$\left\{ \int_{|t|=1}^{\infty} |Kf(t)|^p |dt| \right\}^{1/p} \le N_p \left\{ \int_{|t|=1}^{\infty} |f(t)|^p |dt| \right\}^{1/p},$$

где N_p — норма вышеуказанного изоморфизма. Этим (1) доказано. Следующая теорема является n-мерным апалогом теоремы М. Рисса.

Теорема 1. Справедливо неравенство

$$\int_{|t_{1}|=r_{1}} \dots \int_{|t_{n}|=r_{n}} \left| \int_{|\tau_{1}|=1} \dots \int_{|\tau_{n}|=1} f(\tau) \frac{d\tau_{1} \dots d\tau_{n}}{(\tau_{1}-t_{1}) \dots (\tau_{n}-t_{n})} \right|^{p} |dt_{1}| \dots |dt_{n}| \leq M_{p,n} \int_{|t_{1}|=1} \dots \int_{|t_{n}|=1} |f(t)|^{p} |dt_{1}| \dots |dt_{n}|,$$
(2)

где $t = (t_1, \ldots, t_n), \quad \tau = (\tau_1, \ldots, \tau_n) - комплексные$ векторы, $n \ge 1$, $1 , <math>M_{p,n}$ не зависит от f(t) и чисел r_1, \ldots, r_n ; $0 < r_1 < 1, \ldots, 0 < r_n < 1$.

Доказательство. Рассмотрим пространства $H_{p,n}$ аналитических в полидиске $|t_1| < 1, \ldots, |t_n| < 1$ функций $\varphi(t)$ комплексных переменных t_1, \ldots, t_n с нормой

$$\|\phi\|_{p,n} = \sup_{0 < r_j < 1} \left\{ \int_{|t_1| = r_1} \dots \int_{|t_n| = r_n} |f(t)|^p |dt_1| \dots |dt_n| \right\}^{1/p}.$$

Эти пространства рефлексивны, как подпространства рефлексивных пространств

$$L_{p,\,n}=\left\{f\left(t
ight):\int\limits_{\mid \,t_{\,n}\mid=1}\ldots\int\limits_{\mid \,t_{\,n}\mid=1}\mid f\left(t
ight)\mid^{p}\mid dt_{\,1}\mid\ldots\mid dt_{\,n}\mid\,<\infty
ight\}.$$

Рассуждая, как выше, установим изоморфизм $H_{q,n}$ и $H_{p,n}$, 1/p+1/q= =1, где $H_{p,n}$ есть сопряженное пространство к $H_{p,n}$.

$$K_n f(t) = \frac{1}{(2\pi)^n} \int_{|\tau_1|=1} \dots \int_{|\tau_n|=1} f(\tau) \frac{|d\tau_1| \dots |d\tau_n|}{(1-\bar{\tau}_1 t_1) \dots (1-\bar{\tau}_n t_n)},$$

ортогонально проектирует $L_{2,n}$ на $H_{2,n}$. Это следует из того, что $K_n f$ есть ряд Фурье по ортонормированной в L_2 системе функций

$$\left\{\frac{1}{(2\pi)^{n/2}}t_1^{K_1}\dots t_n^{K_n}\right\}_{K_1,\dots,K_n=0}^{\infty}$$

Но оператор K_n можно записать также в виде

$$K_n f(t) = \frac{1}{(2\pi i)^n} \int_{|\tau_i|=1} \dots \int_{|\tau_n|=1} f(\tau) \frac{d\tau_1 \dots d\tau_n}{(\tau_1 - t_1) \dots (\tau_n - t_n)}.$$

Поэтому неравенство (2) следует из изоморфизма между $H_{q,n}$ и $H_{p,n}^{\bullet}$ Теорема 2. Справедливо неравенство

$$\int_{\Omega} \left| \int_{\Omega} f(\tau) \prod_{\nu=1}^{n} \frac{r_{\nu}^{2}}{(r_{\nu}^{2} - \bar{\tau}_{\nu} t_{\nu})^{2}} d\Omega_{\tau} \right|^{p} d\Omega_{t} \leqslant M_{p, n} \int_{\Omega} |f(t)| d\Omega_{t}, \tag{3}$$

где $\Omega = \{|t_v| < r_v; v = 1, ..., n\}$ — поликруг, интегрирование происходит по мере Лебега (индексы t и τ указывают переменную интегрирования) $M_{p,n}$ не зависит от f(t), 1 .

Доказательство. Рассмотрим пространства $H_{p,n}^{'}$ аналитических в поликруге Ω функций $\varphi(t)$ комплексных переменных t_1,\ldots,t_n с нормой

$$\|\varphi\|'_{p,n} = \left\{ \int_{\Omega} |\varphi(t)|^p d\Omega_t \right\}^{1/p}.$$

Пространства $H_{p,n}$ рефлексивны, как подпространства пространства $L_p(\Omega)$, состоящего из всех комплексных суммируемых по Ω в р-й степени

функций f(t) с той же нормой. Поэтому $H_{q,n}$, изоморфно сопряженному к $H_{p,n}$, 1/p+1/q=1, пространству $[H_{p,n}]^*$. (Изоморфизм пространства $[H_{p,1}]^*$ и $H_{q,1}$ был установлен ранее другим путем В. П. Захарютой и В. И. Юдовичем (2).) Оператор P

$$Pf(t) = \frac{1}{\pi^n} \int_{\Omega} f(\tau) \prod_{\nu=1}^n \frac{r_{\nu}^2}{(r_{\nu}^2 - \bar{\tau}_{\nu} t_{\nu})^2} d\Omega_{\tau}$$

ортогонально проектирует $L_2(\Omega)$ на $H'_{2,n}$ (см. (3), стр. 556). Поэтому неравенство (3) следует из изоморфизма между $[H'_{p,n}]^*$ и $H'_{q,n}$.

Теорема 3. Справедливо неравенство

$$\int\limits_{\Omega} \left| \int\limits_{\Omega} f(\tau) \frac{d\Omega_{\tau}}{\left(1 - \sum\limits_{\mathbf{v} = \mathbf{1}}^{n} \bar{\tau}_{\mathbf{v}} t_{\mathbf{v}} \right)^{n+1}} \right|^{p} d\Omega_{t} \leqslant M_{p, n} \int\limits_{\Omega} |f(t)|^{p} d\Omega_{t},$$

еде $\Omega = \{|t_i|^2 + \ldots + |t_n|^2 < 1\} - map, M_{p,n}$ не зависит от f(t), 1 . Доказательство. Оператор <math>Q,

$$Qf(t) = \frac{n!}{\pi^n} \int_{\Omega} f(\tau) \frac{d\Omega_{\tau}}{\left(1 - \sum_{\nu=1}^{n} \bar{\tau}_{\nu} t_{\nu}\right)^{n+1}},$$

ортогонально проектирует пространство $L_2(\Omega)$ на его подпространство, состоящее из аналитических в Ω функций ((3), стр. 557). Дальнейшие рассуждения вполне аналогичны доказательству предыдущих теорем.

Изучим теперь ортогональные проекторы, соответствующие областям, отличным от канонических. При этом ограничимся плоским сдучаем (n =

= 1).

Пусть Γ — замкнутая кусочно-гладкая кривая Жордана по плоскости комплексного переменного z. Обозначим через $\vartheta(z)$ угол между положительным направлением вещественной оси и касательной в точке z к кривой Γ (ориентированной обычным образом), меняющийся непрерывно всюду, кроме угловых точек, в которых его скачок заключен между — π и π . Положим

$$\alpha = \min_{\Gamma} (\vartheta(z + 0) - \vartheta(z - 0)),$$

где $\vartheta(z+0)$ ($\vartheta(z-0)$) означает предел со стороны последующих (соответственно предшествующих) значений $z \in \Gamma$.

Положим еще

$$L_p(\Gamma) = \left\{ f(z) : \int_{\Gamma} |f(z)|^p |dz| < \infty \right\}$$

и введем норму в $L_p(\Gamma)$ обычным образом.

Рассмотрим оператор П,

$$\Pi f(z) = \frac{1}{2\pi} \int_{\Sigma} f(\zeta) \frac{\sqrt{\overline{\phi'(\zeta)}} \sqrt{\phi'(z)}}{1 - \overline{\phi(\zeta)} \phi(z)} |d\zeta|,$$

где $f \in L_p(\Gamma)$, а $t = \varphi(z)$ есть конформное отображение внутренности Ω кривой Γ на круг $|t| < 1, z \in \Omega$.

Tе орема 4. Оператор Π ограничен в $L_p(\Gamma)$ при 1

и неограничен при $p > 2(1 + \pi / \lceil \alpha \rvert)$.

Доказательство. Положим

$$E_p = \{ f(z) : f(\psi(t)) [\psi'(t)]^{1/p} \in H_p \},$$

где $\psi(t)$ — обратное отображение к $\phi(z)$, и введем в E_ρ норму из $L_p(\Gamma)$. Пространства E_p рефлексивны. Оператор П ортогонально проектирует $L_2(\Gamma)$ на E_2 . Пользуясь этим, можно показать, что ограниченность П в $L_p(\Gamma)$ имеет место в том и только в том случае, если

$$\int\limits_{\Gamma} |\varphi'(\zeta)^{p/2}| \, d\zeta| < \infty.$$

Согласно результатам работы автора (4), последнее неравенство выполняется при $1 и не выполняется при <math>p > 2(1+\pi/|\alpha|)$.

Теорема доказапа.

Таганрогский радиотехнический институт

Поступило 13 IX 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ А. Зигмунд, Тригонометрические ряды, 1, М., 1965. ² В. П. Захарюта, В. И. Юдович, УМН, 19, 2, 139 (1964). ³ Б. В. Шабат, Введение в комплексный анализ, М., 1969. ⁴ Э. М. Саак, Сообщ. на 1-й конфер. Ростовск. матем. общ., Ростов-на-Дону, 1967, стр. 37.