УДК 546.271.621.546.53.04

КИМИХ

к. н. семененко, о. в. кравченко, и. и. коробов

ВЗАИМОДЕЙСТВИЕ В СИСТЕМАХ А1(ВН₄)₃ — АРОМАТИЧЕСКИЙ УГЛЕВОДОРОД

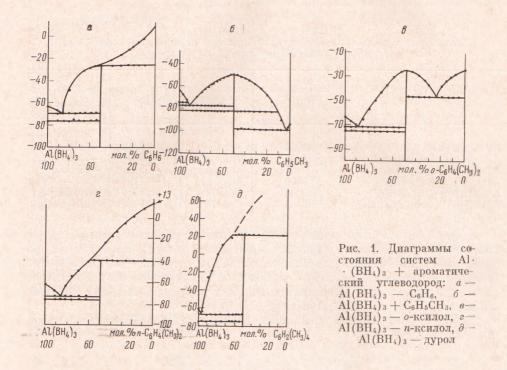
(Представлено академиком А. В. Новоселовой 20 IX 1972)

Известно большое число нестойких соединений типа л-комплекссов, при образовании которых молекулы ароматических углеводородов-доноров л-электронов взаимодействуют с молекулами акцепторов — обобщенных кислот Льюиса. Акцепторами электронов в л-комплексах могут быть галонды и полигалондные соединения, сернистый и азотноватый ангидрид, бромистый алюминий, некоторые органические молекулы и т.д. В ряде случаев (1) при достаточном понижении температуры комплексы с ароматическими углеводородами могут быть получены в виде кристаллических, обладающих высоким давлением диссоциации, соединений теплоты образования которых обычно невелики и не превышают 1—5 ккал / моль.

До настоящего времени не исследовались содержащие ароматические углеводороды системы, в которых акцепторами электронов служили бы молекулы гидридов легких металлов. Косвенное указание на возможность взаимодействия в таких системах содержится в работе (2), в которой показано, что полосы поглощения в у.-ф. спектре бензола смещаются в низкочастотную область в присутствии триалкиламиналанов. Поскольку все связи в молекуле триалкиламиналанов носят насыщенный двухцентровый характер, взаимодействие ароматического углеводорода с молекулой $AIH_3 \cdot NR_3$ может быть связано с возбуждением у атома алюминия нового валентного состояния и, в предельном случае, с изменением формы координационного полиэдра атома алюминия.

Интересным объектом для изучения взаимодействия гидридов легких металлов с π-донорами являются электронодефицитные молекулы борогидрида алюминия. Молекула Al(BH₄)₃, согласно (³), имеет конфигурацию тригональной призмы, экваториальная плоскость которой занята Al, B и концевыми атомами водорода BH₄-групп. Эта молекулярная структура мо-

жет быть интерпретирована следующим образом.


Два типа связей Al-B и $B-H_{\text{конп}}$ являются нормальными двухцентровыми. Для образования этих связей атомы бора и алюминия используют по 3 гибридных sp^2 -а.о. Четвертая а.о. атома бора — предположительно P_z — перпендикулярная плоскости, в которой лежат σ -связи Al-B и $B-H_{\text{конц}}$ взаимодействуют с двумя s-а.о. атомов водорода и одной из трех pd^2 -а.о. атома алюминия с образованием четырехвалентной м.о., заселенной двумя электронами. Действительно, межатомное расстояние Al-B в молекуле $Al(BH_4)_3$ близко к сумме так называемых «ковалентных» радиусов алюминия и бора, а расстояния $BH_{\text{мост}}$ и $AlH_{\text{мост}}$ близки к соответствующим расстояниям в гидридах бора и алюминия, в которых эти связи являются многоцентровыми (4).

С помощью этих представлений можно объяснить призматическую, а не октаэдрическую конфигурацию молекулы борогидрида алюминия, очевидно, плоскость, в которой лежат водородные «мостиковые» связи $\mathrm{AlH}_2\mathrm{B}$, должна быть перпендикулярной плоскости σ -связей, что и наблю-

дается в действительности.

Представляется вероятным, что взаимодействие борогидрида алюминия с ароматическими углеводородами может быть связано со слабым взаимодействием л-электронов молекулы $C_6H_{6-n}R_n$ с системой четырехцентровых м.о. молекулы $Al(BH_4)_3$ без изменения конфигурации последней.

В настоящей работе приводятся исследования взаимодействия в системах $Al(BH_4)_3 - C_6H_6$; $Al(BH_4)_3 - C_6H_5CH_3$; $Al(BH_4)_3 - O$ -ксилол,

 $A1(BH_4)_s-n$ -ксилол и $A1(BH_4)_s-$ дурол, полученные с помощью метода низкотемпературной термографии. Ввиду высокой реакционной способности борогидрида алюминия и его растворов в ароматических углеводородах по отношению к влаге и кислороду воздуха образцы для термографического исследования приготовлялись путем перегонки в охлаждаемую жидким азотом термографическую ампулу рассчитанных количеств ароматического углеводорода и спектроскопически чистого, не содержащего следов диборана, борогидрида алюминия. Точность измерения объема перегопяемых жидкостей $\pm 0,002$ мл, что при количестве отобранной жидкости 0,2 мл вносило ошибку $\pm 1\%$. Охлаждение образдов производилось со скоростью 2 град/мин, что позволило избежать застекловывания смесей. Кривые нагревания записывались со скоростью 2-3 град/мин. Различие температур фазовых превращений не превышало $\pm 2^\circ$. Результаты термографических исследований приведены на рис. 1.

Как видно из представленных диаграмм, во всех системах борогидрид алюминия — ароматический углеводород наблюдается образование соединений эквимолекулярного состава. И.-к. спектры соединений $Al(BH_4)_3 \cdot C_6H_5$; $Al(BH_4)_3 \cdot C_6H_5$; $Al(BH_4)_3 - o$ -ксилол; $Al(BH_4)_3 - n$ -ксилол, в области 400-3000 см⁻¹ практически аддитивны спектру борогидрида алюминия и соответствующего углеводорода, что говорит о слабом взаимодействии между компонентами, при комнатной температуре пе приводящем к иска-

жению атомных остовов молекул.

Известно, что прочность π-комплексов зависит от величины потенциала ионизации молекулы — допора π-электронов. Очевидно также, что определенный вклад может впести и диполь-дипольное взаимодействие компонентов в том случае, если молекулы донора и акцептора полярны. Значения дипольных моментов и потенциалов ионизации ароматических углеводородов — π-доноров сопоставлены в табл. 1 с температурами и характером плавления соединений типа Al(BH₄)₃·C₆H_{6-π}R_π.

Таблица 1 Некоторые физико-химические характеристики компонентов соединений $\text{Al (BH_4)_3} \cdot \text{C}_6 \text{H}_{6-n} \text{R}_n$

Соединение	Пот. ионизац. молекулы- донора, э.в.	Дип. момент молекулы- донора, D	т. пл. аром. углеводор., °С	Т. пл. соединения, °С
$\begin{array}{c} Al \ (BH_4)_3 \cdot C_6H_6 \\ Al \ (BH_4)_3 \cdot C_6H_5CH_3 \\ Al \ (BH_4)_3 \cdot \sigma \cdot C_6H_4 \ (CH_3)_2 \\ Al \ (BH_4)_3 \cdot M \cdot C_6H_4 \ (CH_3)_2 \\ Al \ (BH_4)_3 \cdot N \cdot C_6H_4 \ (CH_3)_2 \\ Al \ (BH_4)_3 \cdot 1,2,4,5 \cdot C_6H_2 \ (CH_3)_4 \end{array}$	9,24 8,82 8,56 8,56 8,44 8,02	0 0,37 (г) 0,62 (г) 0,34 (ж) 0	$\begin{array}{c c} +5,43 \\ -95,0 \\ -25,2 \\ -47,9 \\ +13,35 \\ +79,2 \end{array}$	—28 инконгр. —50 конгр. —25 конгр. —40 ииконгр. —22 инкоигр.

Интересно, что соединения с углеводородами, обладающими нулевыми дипольными моментами, плавятся инконгруэнтно, тогда как с углеводородами, имеющими дипольный момент, отличный от нуля,— без разложения. Можно предположить поэтому, что большой вклад в величину энергии образования вносит взаимодействие дипольных молекул $C_6H_{6-n}R_n$ с легко поляризующейся молекулой $Al(BH_4)_3$.

Давление диссоциации комплекса Al(BH₄)₃·1,2,4,6-С₆H₂(CH₃)₄ подчи-

няется уравнению *

$$\lg P = 7,07 \pm 0,18 - \frac{1421 \pm 48}{T}$$

в интервале температур $-35 \div +12^\circ$. Вследствие того, что единственным летучим компонентом является борогидрид алюминия, оказалось возможным оценить изменение теплоты $\Delta H^\circ = -6,50\pm0,22$ ккал и свободной энергии $\Delta G_{285} = 2,72\pm0,45$ ккал процесса комплексообразования

$$Al(BH_4)_{3 (\Gamma)} + C_6H_2(CH_3)_{4 (TB)} \rightarrow Al(BH_4)_3 \cdot C_6H_2(CH_3)_{4 (TB)}$$

Московский государственный университет им. М. В. Ломоносова

Поступило 12 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. Эндрюс, Д. Киффер, Молекулярные комплексы в органической химии, М., 1967. ² К. Н. Семененко, Б. М. Булычев, Н. А. Яковлева, ЖНХ, 16, 6, 1740 (1971). ³ А. Almeningen, G. Gundersen, А. Haaland, Acta chem. scand., 22, 328 (1968). ⁴ У. Липском, У. Эберхардт, Б. Крофорд, Усп. хим., 25, в. 10, 1249 (1956).

^{*} Приведенное уравнение было выведено по пятнадцати экспериментальным точкам.