УДК 547-39:541.572

химия

Академик АН УССР Р. В. КУЧЕР, А. А. ТУРОВСКИЙ, Н. А. ТУРОВСКИЙ, Н. В. ДЗУМЕДЗЕЙ, А. Ф. ДМИТРУК

О КОНФОРМАЦИЯХ НЕКОТОРЫХ НЕСИММЕТРИЧНЫХ АЛКИЛЬНЫХ ПЕРЕКИСЕЙ

В связи с большим количеством синтезированных органических перекисей и их практическим применением исследования конформаций их молекул, установление пространственной структуры, влияющей на их реакционную способность в различных химических реакциях, представляет значительный научный интерес. В настоящее время известны лишь иссле-

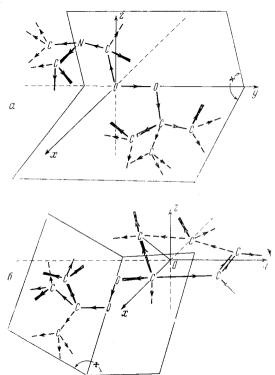


Рис. 1. Модель структуры трет.-бутилнероксиметилдиметиламина (а) и трет.-бутилнероксициклопентена-2 (б)

дования пространственной структуры перекиси водорода (1) и некоторых

перэфиров $(^2, ^3)$.

Целью настоящей работы было исследование особепностей пространственной структуры несимметричных алкильных перекисей, термическая устойчивость которых изучена ранее (4, 5). Конформационный анализ проводили на основе квантовомеханических расчетов кулоновской энергии Е и дипольных моментов и молекул в сопоставлении с экспериментальными значениями диполей. Расчеты проводились по разработанной нами программе «Диполь — Электростатика — Ротор», при разработке которой использованы программы «Сигма» и «Кулон» (6), и реализовалась на ЭВМ

«Минск-22». Предлагаемое сочетание результатов расчетов с экспериментальными значениями и позволяет сравнительно просто оценить значение дигедрального угла — параметра, определение которого представляет значительную трудность при выяснении пространственной структуры моле-

кул (1).

Объектами исследования были избраны трет.-бутилпероксиметилдиметиламин [$(CH_3)_2NCH_2OOC(CH_3)_3$] (I), трет.-бутилпероксиметилдиэтиламин [$(C_2H_5)_2NCH_2OOC(CH_3)_3$] (II), трет.-амилпероксиметилдиизопропиламин [$(u_3o-C_3H_7)_2NCH_2OOC_5H_{11}$] (III) и трет-бутилпероксициклопентен-2: [цис- $C_5H_7OOC(CH_3)_3$] (IV). При расчетах использовались элементы струк-

туры изобутана (°), перекиси водорода, диметиламина (°), циклопентена (¹°). В качестве модели перекисного мостика принята каплапарная система с длиной связи 0—0, равной 1,49 Å. Длина связи С—О принималась равной 0,41 Å и \angle COC = 100° (¹¹).

Модели структуры перекисей I и IV показаны на рис. 1. В этих моделях изменения электростатической энергии и величин дипольных моментов при вращении вокруг связи О—О позволяют оценить величины дигедральных углов и количество поворотных конформеров.

На рис. 2 приведены результаты расчетов зависимостей кулоновской энергии, дипольного момента от угла вращения групп вокруг связи O-O (κ). В зависимости от κ значения κ и κ для перекиси I изменяются в дианазонах 20, κ 30–22, 30 ккал/моль, κ 0,85–2,1 κ 0,1 D соответственно. Минимумы κ (1, 3, 5, 7) отвечают более вероятным конформерам. Для решения вопроса о наиболее выгодной конформации молекулы необходимо сравнить рассчитанные значе-

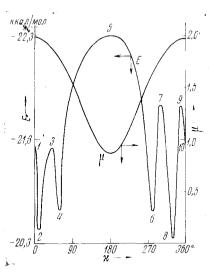


Рис. 2. Зависимость злачений кулоповской эпергии и дипольных моменгов (µ) от величины дитедрального угла для молскулы трет-бутилпероксиметилдиметиламина (см. примечание к табл. 1)

ния дипольных моментов, соответствующие минимумам E, с экспериментально найденными μ . Для наиболее выгодного конформера должно наблюдаться совпадение рассчитанного μ с экспериментальным его значением.

Экспериментальные значения дипольных моментов, определены вторым методом Дебая (12) в бензоле при температуре 25° С, для перекисей I, II, III, IV оказались соответственно равны 0,95; 1,02; 1,28; 2,63 с точностью $\pm 0,1$ D. Таким образом, для перекиси I экспериментально найденному значению диполя (0,95 D) наиболее близкий энергетический минимум 5, соответствующий рассчитанному $\mu = 0,85$ D. Для этого конформера дигедральный угол равен 175°, а рассчитанное значение E = 22,20 ккал/моль.

В табл. 1 приведены значения кулоновских энергий, дипольных моментов, дигедральных углов и условных потенциальных барьсров взаимного нерехода конформеров по отношению к наиболее выгодному, для которого значение величины ΔE условно принято равной нулю. Как видно, незначительным изменениям электростатических энергий соответствуют довольно большие изменения дипольных моментов. Наиболее близкими к экспериментальным значениям μ для перекиси II и III являются рассчитанные величины 0,97 и 1,17 D. В энергетическом отношении для перекиси IV выгодны как псевдоаксиальная (E=20,30 ккал/моль), так и псевдоэкваториальная (E=20,20 ккал/моль) формы конформеров. Численное значение экспериментально найденного дипольного момента для IV равна 2,63 D.

Значения величии электростатических эпергий (E, ккал/моль), относительных потенциальных барьеров (ΔE *, ккал/моль), дигедрального угла (\varkappa , градусы) и дипольных моментов (μ , D) для перекисей Π — IV

	II				III -				IV (псевдоаксиаль- ная форма)				IV (псевдоэквате- риальная форма)			
	E	ΔE^*	ж	μ	— E	ΔE^*	×	μ	-E	ΔE^*	х	μ		ΔE^*	×	'n
1 3 5 7 9 11 2 4 6 8 10	25,35 26,53 25,77 25,72 24,54 24,76 24,80 24,47	0,76 0,76 0,81 1,99 1,77 1,73	175 300 350 5 55 280	2,32	21,41 20,41 20,69 19,42 19,74 20,59	0,40 0 $1,00$ $0,72$ $1,99$ $1,67$	95 175 295 350 5 55 115 280	1,17 2,96 3,42 3,42 3,03 2,09	20,14	0,7 0,38 0,22 3,44 1,12 1,14	240 275 325 0 215 260	1,89 $2,14$ $2,49$ $2,50$	11,40 19,60	0,18 0 8,20 0,60	310 35 280	$\begin{bmatrix} 0,50 \\ 2,67 \\ 2,95 \\ 2,23 \end{bmatrix}$

11 римечание. Здесь и на рис. 1 — 1, 7, 5, 7, 9, 41 — номера менимумов кулоновской энергии для перекисей 11-1V; 2, 4, 6, 9, 40 — номера максимумов кулоновской энергии.

Методом и.-к. спектроскопии нами было показано, что для перекиси IV в области валентных колебаний связи C—O (1049; 962 см⁻¹) и O—O (876; 854 см⁻¹) наблюдается по две полосы поглощения. Это позволило сделать предположение о существовании для перекиси IV двух конформаций (исевдоаксиальной и исевдоэкваториальной) и оценить их соотполнение (1:4). С учетом этого рассчитанный дипольный момент $\mu_{\text{выч}} = \sqrt{0.2(0.25)^2 + 0.8(2.67)^2} = 2.4$ D удовлетворительно согласуется с экспериментальным.

Следует отметить, что в основе метода лежит чисто электростатическая модель. Естественно, схематичность последней не может отобразить все аспекты структуры молекулы. В то же время в пользу возможности применения подобного рода расчетов свидетельствует удовлетворительное согласие результатов с экспериментом.

В случае органических перекисей, для которых подобные исследования не проводились, полученная информация может быть полезиа при интерпретации и.-к. спектров и изучения эффектов влияния поворотной изомерии на реакционную способность перекисных соединений в реакциях их различных превращений.

Допецкое отделение института физической химии Академии наук УССР Поступцао 27 XII 1972

Донецкий государственный университет

НИТИРОВАННАЯ ЛИТЕРАТУРА

¹ I. Amako, R. A. Giguero, Canad. J. Chem., 40, 765 (1962). ² W. Lobunez, J. R. Rittenhouse, J. E. Miller, J. Am. Chem. Soc., 80, 3505 (1958). ³ M. T. Rogers, T. W. Esampbell, J. Am. Chem. Soc., 74, 4742 (1952). ⁴ P. B. Кучер, A. A. Туровекий и др., Журп. орг. хим., 7, 2503 (1971). ⁵ А. А. Туровекий, Р. В. Кучер и др., Докл. АН УССР, сер. Б. 254 (1972). ⁶ Ю. А. Кругляк, Г. Г. Дядю ша и др., Методы расчета электронной структуры и спектров молекул, Киев, 4969. ⁷ Э. Илиел, Конформационный анализ, М., 4969. ⁸ D. R. Lide, J. Chem. Phys., 33, 4519 (1960). ⁹ D. R. Lide, J. Chem. Phys., 77, 343 (1957). ¹⁰ M. J. Davis, T. W. Мисекс, J. Phys. Chem., 5, 1104 (1970). ¹¹ T. Jonezawa, O. Kato, О. Jonezawa, Bull. Chem. Soc. Japan, 40, 307 (1967). ¹² О. А. Осипов, В. И. Минкин, Справочник по дипольным моментам, 1971.