УДК 517.948.32

MATEMATHKA

Член-корреспондент АН СССР М. М. ЛАВРЕНТЬЕВ, А. Л. БУХГЕЙМ

ОБ ОДНОМ КЛАССЕ ЗАДАЧ ИНТЕГРАЛЬНОЙ ГЕОМЕТРИИ

1. Пусть $\Gamma(x, v) = \{ \xi \in R^n : \varphi(\xi, x, v) = 0 \}$ — гладкая ориентировочная гиперповерхность, проходящая через точку x и имеющая в этой точке нормаль v (не ограничивая общности, можно считать, что $|D_{\tau}\varphi| = 1$). Пусть, далее, $\Omega \subset R^n$ — ограниченная область и $u \in C_0(\Omega)$. Рассмотрим уравнение

$$\int_{\Gamma(x,v)} u \, d\mathfrak{z} = v(x,v), \quad x \in \Omega, \quad v \in S_1; \tag{1}$$

здесь S_t — единичная сфера в R^n , $d\sigma$ — эвклидов элемент поверхности Γ .

3адача. По функции $v(x,\, v)$ восстановить функцию u.

Замечание. В указанной постановке задача (1) переопределена, так как по функции 2n-1 переменных мы восстанавливаем функцию n переменных. Однако в ряде случаев переопределенность может быть устранена. Приведем примеры.

1) $\varphi(\xi, x, v) = \langle \xi - x, v \rangle$, т. е. $\Gamma(x, v)$ — плоскости. Это классическая задача Радона (см., например, (1)), и функция v зависит на самом деле от n

независимых параметров.

2) Пусть $\Gamma(x, v)$ — семейство гиперповерхностей, которое получается в результате параллельного переноса в пространстве произвольного строго выпуклого тела с гладкой границей. Так как положение этого тела в пространстве однозначно определяется его центром тяжести, то семейство $\Gamma(x, v)$ зависит фактически от n параметров. Например, если указанное тело есть единичный шар, то $\Gamma(x, v)$: $\varphi(\xi, x, v) = \langle \xi - x, v \rangle + \frac{1}{2} | \xi - x |^2 = 0$ — семейство единичных сфер, которое однозначно определяется своим центром z = x - v. Задача восстановления функции через интегралы от нее по сферам единичного радиуса изучалась Джоном (2).

3) Пусть гиперповерхности $\Gamma(x, v)$ обладают следующим свойством: если $z \in \Gamma(x, v)$ и $\tau = D_{\xi} \varphi|_{\xi=z}$ — нормаль к гиперповерхности $\Gamma(x, v)$ в

Toure z, to $\Gamma(x, v) = \Gamma(z, \tau)$.

Тогда

$$\langle D_x \varphi(\xi, x, v), l \rangle = 0, \quad \forall l \perp v.$$
 (2)

Поскольку существует ровпо n-1 линейно независимых векторов l, ортогональных к v, то (2) эквивалентно системе n-1 линейных дифференциальных уравнений с частными производными первого порядка, из которых можно (по крайней мере локально) исключить «лишние» n-1 переменных и добиться того, чтобы гиперповерхности $\Gamma(x, v)$, а следовательно, и функция v(x, v) зависела только от n переменных.

2. Переходим к решению уравнения (1). Усредняя (1) по всем $v \in S_i$,

получим

$$\int \frac{K(\xi, x)}{|\xi - x|} u(\xi) d\xi = v_1(x), \tag{3}$$

где

$$v_{1}(x) = \int_{|y|=1} v(x, y) d\omega_{y}, \quad K(\xi, x) = \int_{|y|=1} \delta\left(\frac{\varphi(\xi, x, y)}{|\xi - x|}\right) d\omega_{y},$$

 $d\omega_{\nu}$ — элемент телесного угла в R^n , δ — функция Дирака.

По формуле Тейлора

$$\varphi(\xi, x, y) = \langle \xi - x, y \rangle + \langle A(\xi, x, y)(\xi - x), (\xi - x) \rangle,$$

где A- матрица вторых производных.

Пусть

$$\|A\|_{\mathcal{C}} = \sup_{\substack{\xi, x \in \Omega \\ v \in S_1}} \|A(\xi, x, v)\| \quad \|A\| = \sup_{z \in R^n} \frac{\langle Az, Az \rangle}{\langle z, z \rangle};$$

$$||D_{\mathsf{v}}A||_{C}^{2} = \sum_{j=1}^{n} ||A_{\mathsf{v}_{j}}^{'}||_{C}^{2}.$$

 Π емма. Eсли $\varphi \in C^3(\Omega \times \Omega \times S_1)$ и

$$||A||_c \leq \delta / d(\Omega), \quad ||D_{\nu}A||_c \leq \delta / d(\Omega),$$

где $\delta < 1$ и $d(\Omega) - \partial$ иаметр Ω , то $K(\xi, x) \in C(\Omega \times \Omega)$ и $K(x, x) = \omega_{n-1} - n$ лощадь единичной сферы в R^{n-1} . Если дополнительно предположить, что $\varphi \in C^{|\alpha|+3}(\Omega \times \Omega \times S_1)$, то при $\xi \neq x$ ядро $K(\xi, x)$ имеет непрерывные производные по x до порядка $|\alpha|$, причем

$$|D_{x}^{\alpha}K(\xi,x)| \leqslant C_{\alpha}/|\xi-x|^{|\alpha|-1}.$$

В дальнейшем для простоты ограничимся нечетномерным пространством R^n . Применяя к (3) оператор $\Delta^{(n-1)/2}$ (Δ — оператор Лапласа), мы получим интегральное уравнение второго рода, которое по лемме имеет слабую особенность. Итак, справедлива

Теорема 1. Если $\varphi \in C^{n+2}(\Omega \times \Omega \times S_1)$, $v_1 \in C^{n-1}(\Omega)$ и $d(\Omega) < \varepsilon$, $\varepsilon = \varepsilon(\Gamma(x, v))$, то уравнение (1) имеет единственное решение $u \in C(\Omega)$.

Замечание 1. В четномерном пространстве справедлива аналогичная теорема, только в этом случае для сведения уравнения (1) к уравнению второго рода пужно применить оператор Лапласа в дробной степени.

Замечание 2. Аналогично уравнению (1) может быть изучено уравнение

$$\int_{\Gamma(x,v)} \sum_{|\alpha| \leq n-2} a_{\alpha}(\xi,x) D^{\alpha}u(\xi) d\mathfrak{z} = v(x,v).$$

3. Уравнение (1) можно рассматривать как систему операторных уравнений первого рода в $L_2(\Omega)$ $A_{\nu}u=v_{\nu}, \quad \nu \in S_1$;

$$(A_{\nu}u)(x) = \int_{\Gamma(x,\nu)} u \, d\mathfrak{z}, \quad u \notin C_0(\Omega).$$

Предположим, что функции $g(v) = (A_v u, h)_{L_2(\Omega)}$ аналитические на S^1 $\forall u \in C_0(\Omega)$, $\forall h \in H$, $\overline{H} = L_2(\Omega)$ (в качестве H можно взять, например, многочлены). Пусть далее множество $\omega \subset S_1$ обладает тем свойством, что любая аналитическая на S_1 функция, равная пулю на ω , равна нулю тождественпо. Тогда в условиях теоремы 1 функция u определяется однозначно по функции v(x, v), $x \in \Omega$, $v \in \omega$.

Вычислительный центр Сибирского отделения Академии наук СССР Новосибирск Поступило 22 I 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. М. Гельфанд, М. И. Граев, Н. Я. Виленкин, Интегральная геометрия и связанные с ней вопросы теории представлений, обобщенные функции, в. 5, М., 1962. ² Ф. Йон, Плоские волны и сферические средние, ИЛ, 1958.