УДК 543.832/.835

MATEMATHKA

В. В. ЛЫЧАГИН

ЛОКАЛЬНАЯ КЛАССИФИКАЦИЯ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА

(Представлено академиком Л. С. Понтрягиным 7 VIII 1972)

В этой заметке дается локальная классификация пелинейных дифференциальных уравнений первого порядка на основе предложенного А. М. Виноградовым припципа классификации дифференциальных уравнений. В дальнейшем мы используем определения и результаты статьи (1).

Под нелинейным дифференциальным уравнением в частных производных первого порядка мы будем понимать гладкое подмногообразие $V \subset J^1M$, codim V = 1. Многозначными решениями этого уравнения являются R-многообразия, лежащие в V.

 \dots,p_n) имеет вид $\rho=\sum_{i=1}^{n}p_i\,dq_i$. Верно и обратное: каждое лагранжево многообразие $\bar L\subset T^*M$, на котором $\rho|_{\overline L}=df$, определяет такое R-многообра-

эме $L \subset j^1 M$, $L = \{(x, f(x)), x \in \overline{L}\}$, что $\pi_1(L) = \overline{L}$.

 U_1 -диффеоморфизмы, т. е. диффеоморфизмы J^1M , сохраняющие классифицирующий элемент $U_1 \subseteq \Lambda^1(J^1M)$ (напомпим, что $U_1 = du - p \ dq$ в соответствующих локальных координатах J^1M), являются поднятиями канонических диффеоморфизмов T^*M , имеющих производящую функцию. Пусть α : $T^*M \to T^*M$ — такой диффеоморфизм и $S_\alpha \in C^\infty(T^*M)$ — производящая функция α , т. е. $\alpha^*(\rho) - \rho = dS_\alpha$. Подпятие $\bar{\alpha}$: $J^1M \to J^1M$ определим следующим образом: $\bar{\alpha}(x,u) = (\alpha(x),u+S_\alpha(x)), x \in T^*M, u \in R^1, (x,u) \in I^*M$. Легко проверяется, что $\bar{\alpha} - U_1$ -диффеоморфизм и, кроме того, любой U_1 -диффеоморфизм можно представить в виде $\bar{\alpha}$ для некоторого канонического диффеоморфизма α .

Уравнения $V^1 \subset J^1M$ и $V_2 \subset J^1M$ локально эквивалентны (U_1 -эквивалентны) в точках $x_1 \in V_1$ и $x_2 \in V_2$, если существуют окрестности $O_1 \ni x_1, O_2 \ni x_2$ и классифицирующий (= контактный) диффеоморфизм (U_1 -диффеомор

физм) $\beta \colon \hat{O}_1 \to \hat{O}_2$, $\beta(x_1) = x_2$ такой, что $\beta(V_1 \cap \hat{O}_1) = \hat{V}_2 \cap O_2$.

Теорема 1. а) Если ограничение π_i : $J^iM \to T^*M$ на V_i является диф-феоморфизмом в некоторых окрестностях точек $x_i \in V_i$, i=1, 2, u $\omega_i|_{x_i} \neq 0$, где $\omega_i = U_1|_{V_i}$, то уравнения $V_1 \subset J^iM$ и $V_2 \subset J^iM$ локально U_1 -эквивалентны в точках x_i .

б) если $\omega_i|_{x_i} \neq 0$, то уравнения $V_i \subset J^i M$ и $V_2 \subset J^i M$ локально эквивалентны в точках x_i .

Отметим, что из теоремы 1 следует, что множество многозначных решений уравнения $V \subset J^{1}M$ в окрестности точки $x, \omega|_{x} \neq 0$, локально устроено так же, как и уравнения u = 0, если последнее рассматривать как уравнения первого порядка в окрестности точки $(q, p, u), p \neq 0$, где (q, p, u) - 0

естественные локальные координаты в $J^{1}M$. Поэтому это множество решений эквивалентно множеству дагранжевых многообразий $L \subseteq T^{*}M$, $\rho|_{L} = 0$,

лежащих в окрестности точки $(q, p), p \neq 0$.

Рассмотрим следующий вопрос: когда существует обычное решение уравнения $V \subset J^1 M$, проходящее через точку $x \in V$. Для этого обозначим S(x) вектор, косоортогональный относительно формы $d\omega|_x$ подпространству пулей формы $\omega|_x$, $\omega|_x \neq 0$. Из теоремы 1 непосредственно следует, что для существования обычного решения уравнения $V \subset J^1 M$ необходимо и достаточно, чтобы $\pi_*(S(x)) \neq 0$, где $\pi: J^1 M \to M$ — естественная проекция.

Рассмотрим случай, когда точки $x_i \in V_i$ таковы, что $\omega_i|_{x_i} = 0, \ i = 1, 2$. В точках x_i можно определить «гессиан» формы ω_i , как билинейную форму $H_{\omega_i}(X, Y) = \overline{X}\omega(\overline{Y})|_{x_i}, \quad X, \ Y \in T_{x_i}(V_i)$, а векторные поля $\overline{X}, \ \overline{Y}$ являются произвольными продолжениями X и Y соответственно, т. е. $\overline{X}_{x_i} = X, \ \overline{Y}_{x_i} = Y$. Из формулы

$$d\omega_{i}(\overline{X}, \overline{Y})|_{x_{i}} = \overline{X}\omega_{i}(\overline{Y})|_{x_{i}} - \overline{Y}\omega_{i}(\overline{X})|_{x_{i}}$$

$$\tag{1}$$

непосредственно следует, что билинейная форма $H_{\omega_i}(X, Y)$ определена корректно.

Легко видеть, что формы $d\omega$ в точках x_i ($\omega_i|_{x_i}=0$) имеют максимальный ранг, а поэтому билинейная форма $H_{\omega_i}(X,Y)$ определяет оператор H_i : $T_{x_i}(V_i) \to T_{x_i}(V_i)$, $d\omega_i(H_iX,Y) = H_{\omega_i}(X,Y)$.

Для локальной U-эквивалентности уравнений $V_i \subset J^iM$ в точках x_i необходима симплектическая эквивалентность форм $H_{\omega_i}(X,Y)$, или, что то же самое, операторов H_i . Вместо бплинейных форм $H_{\omega_i}(X,Y)$ можно рассмотреть симметрические формы $H^s_{\omega i}(X,Y) = {}^i/{}_2(H_{\omega_i}(X,Y) + H_{\omega_i}(Y,X))$; из формулы (1) следует, что $H^s_{\omega_i}(X,Y) - H_{\omega_i}(X,Y) = {}^i/{}_2 d\omega_i(X,Y)$, т. е. задача симплектической классификации билинейных форм H_{ω_i} эквивалентна классификации квадратичных форм относительно группы симплектических преобразований.

Заметим, что так как любую симметрическую форму можно реализовать в виде $H_{\omega}^{s}(X, Y)$ для некоторого уравнения $V \subset J^{t}M$, то локальная U-классификация в точках $x_{i} \in V_{i}$, $\omega_{i}|_{x_{i}} = 0$ не является дискретной.

Аналогично для локальной эквивалентности уравнений необходима эквивалентность форм $H_{\omega}{}^s(X,Y)$ относительно следующего действия конформно-симплектической группы $CSp(2n)\colon A(H_{\omega})=\lambda_A{}^{-1}A^*(H_{\omega})$, где $A^*(d\omega)=\lambda_A\,d\omega$. Итак, орбита $[H_{\omega}]\ ([H_{\omega}]_U)$ формы H_{ω} относительно таким образом определенного действия конформно-симплектической группы (симплектической группы) является инвариантом задачи локальной клас-

сификации (*U*-классификации) в случае, когда $\omega|_x = 0$.

Обратимся теперь к вопросу о достаточности инварианта $[H_{\omega}]$ ($[H_{\omega}]_U$). Для этого рассмотрим форму $\theta = \operatorname{pr}_1^*\omega_1 - \operatorname{pr}_2^*\omega_2$ на $V_1 \times V_2$, где pr_i : $V_1 \times V_2 \to V_i$ — проекция на i-й сомножитель, i=1,2. Форма $d\theta$ определяет каноническую структуру на некоторой окрестности $u_1 \times u_2 \subset V_1 \times V_2$. График $L_0 \subset T_{(x_1 \times x_2)}(V_1 \times V_2)$ симплектического преобразования $F\colon T_{x_1}(V_1) \to T_{x_2}(V_2)$, переводящего форму H_{ω_2} в H_{ω_1} , как легко видеть, является лагранжевым подпространством в $T_{(x_1 \times x_2)}(V_1 \times V_2)$, $(d\theta|_{L_0} = 0)$ таким, что $H_{\theta}|_{L_0} = 0$. Вопрос о достаточности инварианта $[H_{\omega}]_U$ эквивалентен задаче продолжения линейного преобразования $F\colon T_{x_1}(V_1) \to T_{x_2}(V_2)$, $F^*(H_{\omega_2}) = H_{\omega_1}$, до диффеоморфизма, переводящего ω_2 в ω_1 .

Иначе, говоря, нужно выяснить, существует ли такое лагранжево подмногообразие $W \subset U_1 \times U_2$, которое касается L_0 и на котором $\theta|_W = 0$.

Если рассмотреть $U_1 \times U_2$ как подмногообразие в $J^1(M \times M)$, на котором $U_1|_{U_2 \times U_2} = \emptyset$, то вопрос о достаточности сведется к задаче существования локального решения уравнения первого порядка $V \subset J^1N$, касающегося в точке x заданного лагранжева подпространства L_0 , $\omega|_x = 0$, $H_{\omega}|_{L_0} = 0$. Условие $H_{\omega}|_{L_0} = 0$, как легко видеть, эквивалентно инвариантности лагранжева подпространства L_0 относительно оператора $H: T_x(V) \to T_x(V)$.

Заметим, что наличие лагранжева подпространства $L_0 \subset T_x(V)$, на котором $H_\omega|_{L_0} = 0$ ($H_\omega{}^s|_{L_0} = 0$) или $H: L_0 \to L_0$, является необходимым для

существования решения, проходящего через точку $x \in V$.

Назовем R-миогообразия L_1 и L_2 эквивалентными в точке $x \in J^1M$, если L_1 и L_2 имеют в точке x касание порядка $\gg s$. Множество классов s-эквивалентных в точке $x \in V \subset J^1M$ R-многообразий, представители которых имеют с уравнением $V \subset J^1M$ в точке x касание порядка $\gg s$, обозначим V_x^s . Пусть $\Pi_s \colon V_x^s \to V_x^{s-1}$ — естественная проекция. Заметим, что если рассматривать R-многообразия, без особенностей проектирующиеся на M, то множество $\bigcup_{x \in V} V_x^s$, которое естественным образом можно считать лежащим в $J^{s+1}(M)$, в линейном случае совпадает с s-м продолжением уравнения $V \subset J^1M$ (см. $\binom{2}{2}$).

Предложение. Пусть $V \subset J^1M-$ дифференциальное уравнение первого порядка, $\omega|_x=0$, $x\in V$. Для существования последовательности $x_s\in V_x^s$, $\Pi_s(x_s)=x_{s-1}$, $x_1=x_1^0$, где $x_1^0\in V_x^1-$ точка, определяемая лагранжевым подпространством $L_0\subset T_x(V)$, $H_\omega|_{L_0}=0$, достаточно, чтобы собственные числа $\{\lambda_i\}$ оператора $H\colon L_0\to L_0$ удовлетворяли условию

$$\sum m_i \lambda_i \neq 1,\tag{2}$$

где $\sum m_i \geqslant 3$, m_i — натуральные числа.

Очевидно, что каждое решение L уравнения $V \subset J^1M$, проходящее через точку $x \in V$ и касающееся L_0 , определяет описанную выше последовательность $x_s \in V_x^s$, наличие которой является необходимым условием существования такого решения. Условия (2) не являются необходимыми для существования последовательности x_s , однако при невыполнении их инвариант $[H_{\omega}]$ недостаточен.

Теорема 2. а) Для локальной эквивалентности (U_i -эквивалентности) уравнений $V_i \subset J^i M$ в точках $x_i \in V_i$, $\omega_i |_{x_i} = 0$, $\omega_i = U_i |_{\boldsymbol{v}_i}$, i = 1, 2, необходима конформно-симплектическая (симплектическая) эквивалентность операторов H_i ; это условие достаточно, если собственные числа операто-

ров H_i удовлетворяют (2).

б) Если собственные числа оператора H_i удовлетворяют условию (2), то для произвольного подпространства $L_0 \subset T_{x_i}(V_i)$, $H_{\omega_i}|_{L_0} = 0$, существует

решение L уравнения $V_1 \subseteq J^1M$, касающееся L_0 .

Замечание 1. Пусть $F_i \in C^\infty(T^*M)$ таковы, что $dF_i|_x = 0$, i = 1, 2. Назовем функции F_i локально эквивалентными в точке $x \in T^*M$, если существует канонический диффеоморфизм $\alpha\colon O_1 \to O_2$ некоторых окрестностей $O_i \ni x$ такой, что $\alpha^*(dF_2) = dF_1$. Для локальной эквивалентности функций F_i необходима симплектическая эквивалентность их гессианов $\hat{h}_i(X,Y)$ или симплектическая эквивалентность операторов h_i : $T_x(T^*M) \to T_x(T^*M)$,

$$d_{\Omega}(h_iX, Y) = h_i(X, Y), X, Y \in T_x(T^*M).$$

Аналогично теореме 2 можно доказать, что это условие является достаточным, если собственные числа $\{\lambda_i\}$ операторов h_i таковы, что $\sum_i n_i \lambda_i \neq 0$, $\sum_i n_i \geqslant 3$, n_i — натуральные числа. При невыполнении этих условий инварианта $[h_i]$ недостаточно.

Замечание 2. Указанная выше локальная классификация дифференциальных уравнений первого порядка является, как легко видеть, ло-

кальной классификацией 1-форм $\omega \in \Lambda^1(R^{2n})$ в точке $x, \ \omega|_x = 0, \ и \ d\omega|_x$

максимального ранга.

Замечание З. Скажем, что V формально интегрируемо, если $V^s=\bigcup\limits_{x\in V}V^s_x$ — гладкое многообразие, $s\geqslant 0$, если $\Pi_s\colon V^s\to V^{s-1}$ — расслоенное многообразие (см. (²)). В нашем случае в окрестности точки x, $\omega|_x=0$, уравнение не является формально интегрируемым, хотя V_s , $s\geqslant 0$, — гладкое многообразие. Условия $\sum\limits_{i=1}^\infty m_i\lambda_i\neq 1$, $\sum\limits_{i=1}^\infty m_i\geqslant k$ являются аналогом δ -леммы Пуанкаре, так как в этом случае препятствия к построению цепочки $x_s\in V_x^s$ исчезают при $s\geqslant k-2$.

В заключение автор выражает признательность А. М. Виноградову за

постановку задачи и ценные советы.

Московский институт электронного машиностроения Поступило 1 VIII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. М. Виноградов, ДАН, **210**, № 1 (1973). ² D. C. Spencer, Bull. Am. Math. Soc., **75**, № 2 (1969).