УКД 517.946

MATEMATHKA

В. Г. МАЗЬЯ, Б. А. ПЛАМЕНЕВСКИЙ

ОБ ЭЛЛИПТИЧЕСКИХ КРАЕВЫХ ЗАДАЧАХ С РАЗРЫВНЫМИ КОЭФФИЦИЕНТАМИ НА МНОГООБРАЗИЯХ С ОСОБЕННОСТЯМИ

(Представлено академиком В. И. Смирновым 18 VII 1972)

1°. В этой работе изучаются дифференциальные эллиптические задачи на многообразиях с особепностями довольно общей природы. В качестве особенностей допускаются «ребра» различных размерностей и их всевозможные пересечения (под ненулевыми углами). Такие же множества рассматриваются как носители разрывов коэффициентов.

Краевые задачи в областях с коническими точками на границе достаточно хорошо изучены (см. (¹, ²) и приведенную там литературу). В работах (³-¹¹) с различных точек зрения изучались краевые задачи с особенностями (коэффициентов или границы), сосредоточенными на гладком s-мерном многообразии. Задачи типа С. Л. Соболева в случае подмногообразий с многомерными особенностями рассматривались в (¹²).

 2° . Операторы и пространства. Пусть $\Omega-n$ -мерное многообразие класса \mathcal{D}_n^l , определенного в (15). Мы будем использовать обозначения и терминологию, введенные в (13); в частности, через (ζ_0 , ρ_0 ,, ζ_l , ρ_l , α_l) обозначим локальные координаты на Ω .

..., ζ_l , ρ_l , α_l) ооозначим локальные координаты на Σ .

Пусть $Z_k = (\xi_0, \dots, \xi_k)$, $R_k = (\rho_0, \dots, \rho_k)$, $Z = Z_q$, $R = R_q$; μ_j — мультиндекс размерности d_j , v_j — неотрицательное целое число; $M_k = (\mu_0, \dots, \mu_k)$, $N_k = (v_0, \dots, v_k)$, $M = M_q$, $N = N_q$; $s(M, N) = (|M_0| + |N_0|, \dots, |M_{q-1}| + |N_{q-1}|; 0)$. Функция χ , определенная в \mathscr{P} , принадлежит классу \mathscr{D}^l , если функции $R^{s(M,N)}D_Z^MD_R^N\chi$, где $|M| + |N| \leq l$, непрерывны.

Объединим в класс $O(p, m, \Omega)$, $p + m \leq l$, дифференциальные оператики.

Объединим в класс $O(p, m, \Omega)$, $p+m \le l$, дифференциальные операторы P на $\Omega \setminus \partial \Omega$, подчиненные следующему условию. В любой системе координат $(\xi_0, \rho_0, \dots, \xi_q, \rho_q)$

$$P = \sum_{\substack{|M|+|N| \leqslant p}} a_{M,N} R^{\mathfrak{s}(M,N)-p} D_{\mathbf{Z}}^{M} D_{R}^{N}, \tag{1}$$

где $\mathbf{p}=(p,\ldots,p,0),\ a_{M,N}\in\mathcal{D}^l.$ Если в координатной окрестности V_1 для оператора P справедливо представление (1), то во всякой другой окрестности $V_2(V_1\cap V_2\neq \phi)$ этот оператор представляется в аналогичном виде. Обозначим через L и B матричные дифференциальные операторы размеров $k\times k$ и $r\times k$. Элементы l_{ij} матрицы L принадлежат классам $O(t_{ij},m,\Omega)$, где $t_{ij}\leqslant s_i+t_i,\ t_{ij}+m\leqslant l$, а элементы b_{ij} матрицы B- классам $O(\tau_{ij},m,\Omega)$, где $\tau_{ij}\leqslant \sigma_i+t_j,\ \tau_{ij}+m\leqslant l$. Через $s_i,\ t_i,\ \sigma_i$ обозначены целые числа такие, что $\max s_i=0,\ t_i\geqslant 0,\ s_1+t_1+\ldots+s_k+t_k=2r$. Пусть $\gamma-$ оператор сужения на M^{n-1} и $\mathfrak A-$ оператор краевой задачи $\{L,\gamma B\}$. Будем предполагать, что $\mathfrak A-$ эллиптический по Дуглису — Ниренбергу.

Сопоставим каждому d-мерному страту T вещественное число β_T , $0 \le d \le n-2$, и обозначим через \mathcal{B} набор всех β_T . Пусть U — окрестность, обслуживающая страт T, α : $U \to R^d \times R_T^1 \times \Omega_1$, и пусть $S \in \operatorname{st}(T)$. Обозначим через S_1 страт $\partial \Omega_1$, порожденный стратом S, и положим $\beta_{s_1} = \beta_s$, $\mathcal{B}_1 = \{\beta_{s_1}: S \in \operatorname{st}(T)\}$. Если $\operatorname{st}(T)$ содержит лишь (n-1)-мерные страты, то \mathcal{B}_1 — пустое множество. Введем пространство функций $H_{s\mathcal{B}}$ (Ω). Допустим, что оно определено для всех $\Omega \in \mathcal{D}_h^1$, k < n. На n-мерном многообразии Ω норма в $H_{s\mathcal{B}}$ (Ω) склеивается, как обычно, из локальных норм.

Для функций u с носителями в U введем норму

$$\|u\|_{H_{8\mathscr{B}}} = \Big(\int\limits_{\mathbb{R}^d} d\zeta \int\limits_{0}^{\infty} \sum_{|\mu|+\nu\leqslant s} \|(\rho D_{\rho})^{\mu} (\rho D_{\rho})^{\nu} u \circ \varkappa^{-1}\|^2_{H_{s-|\mu|-\nu},\,\mathscr{B}_{1}(\Omega_1)} \rho^{2(\beta_T-s)+n-d-1} d\rho)^{1/2}.$$

Если \mathscr{B} — пустое множество, то, по определению, $H_{s\mathscr{B}}(\Omega)$ есть пространство $H_s(\Omega)$ С. Л. Соболева. Через $\gamma H_{s\mathscr{B}}(\Omega)$ обозначим пространство следов на M^{n-1} функций из $H_{s\mathscr{B}}(\Omega)$. Пусть s — целое число, $\max\{\sigma_i+1,\ s_i\}\leqslant s\leqslant \min\{t_{ij}+s_i,\ \tau_{ij}+\sigma_i\}$. Оператор \mathfrak{A} , определенный на $\prod_{i=1}^k H_{s+t_j,\mathscr{B}}(\Omega)$, непрерывно действует в $\prod_{i=1}^k H_{s-s_i,\mathscr{B}}(\Omega) \times \prod_{j=1}^r \gamma H_{s-\sigma_i,\mathscr{B}}(\Omega)$. Введем еще в H_s . (Ω) норму, зависящую от векторного параметра ξ :

$$||u||_{H_{s, \mathcal{B}}(\xi, \Omega)}^2 = \sum_{k=0}^{S} |\xi|^{2k} ||u||_{H_{s, \mathcal{B}}(\Omega)}^2.$$

Будем рассматривать также операторы $P(\xi) = \sum_{|\gamma| \leqslant p} \xi^{\gamma} P_{\gamma}$, где $P_{\gamma} \in O(p - |\gamma|, m, \Omega)$. Естественно вводятся матричные операторы $L(\xi)$, $B(\xi)$ и оператор $\mathfrak{A}(\xi) = \{L(\xi), \gamma B(\xi)\}$ краевой задачи. Предположим, что $\mathfrak{A}(\xi)$ эллиптический (с учетом параметра).

 3° . Нётеровость и разрешимость краевой задачи. Пусть U — окрестность, обслуживающая d-мерный страт T, $0 \le d \le n-2$, $x \in U$, (ζ, ρ, α) — проекции точки $\kappa(x)$ на сомножители произведения $R^d \times R_+^1 \times \Omega_1$. В координатах (ζ, ρ, α) оператор $P \in O(p, m, \Omega)$ можно представить в виде

$$P = \rho^{-p} \sum_{\substack{|\mu| + \nu \leqslant p}} P_{\mu, \nu}(\zeta, \rho) (\rho D_{\zeta})^{\mu} (\rho D_{\rho})^{\nu},$$

тде $P_{\mu,\nu} \subseteq O(p-|\mu|-\nu, m, \Omega)$. Для каждой точки $x^{(0)}=(\xi^{(0)}, \rho=0)$ определим «модельный» оператор в $R^1 \times \Omega_1$.:

$$\mathring{P}\left(\zeta^{(0)},\,0;\,\rho\eta,\,\rho D_{\mathrm{P}}\right) = \sum_{|\mu|+\nu\leqslant p} P_{\mu,\,\nu}\left(\zeta^{(0)},\,0\right) \left(\rho\eta\right)^{\mu} \left(\rho D_{\mathrm{P}}\right)^{\nu}.$$

Оператору $P(\xi)$ сопоставим модельный $P(\zeta^{(0)}, 0; \rho \xi, \rho \eta, \rho D_{\rho}) = \sum_{i=1}^{n} (\rho \xi)^{\gamma} \times P_{\gamma}(\zeta^{(0)}, 0; \rho \eta, \rho D_{\rho}), |\gamma| \leq l$. Оператор \mathfrak{A} краевой задачи на Ω^{0} порождает в каждой точке $x^{(0)}$ множества $M^{0} \cup \ldots \cup M^{n-2}$ модельный оператор $\mathfrak{A}(\zeta^{(0)}; 0; \rho \eta, \rho D_{\rho}) = \{\mathring{L}, \gamma \mathring{B}\}$ краевой задачи в $K^{n-d} = R_{+}^{-1} \times \Omega_{1}$, где d – размерность страта T, содержащего $x^{(0)}$. Здесь, $\mathring{L}, \mathring{B}$ – матрицы с элементами $\mathring{l}_{ij}, \mathring{l}_{ij}$. Аналогично определяется оператор $\mathfrak{A}(\zeta^{(0)}, 0; \rho \xi, \rho \eta, \rho D_{\rho})$.

Через $E_{s,\mathscr{B}_{T}}(K^{n-d})$, где $\mathscr{B}_{T}=\{\beta_{T},\mathscr{B}_{1}\}$, обозначим пространство функций в K^{n-d} , снабженное нормой

$$\|v\|_{E_{s_{*},\mathscr{B}_{T}}} = \left(\int_{0}^{\infty} \sum_{k_{1}+k_{2} \leqslant s} \rho^{2k_{1}} \| (\rho D_{\rho})^{k_{2}} v\|_{H_{s-k_{1}-k_{2}\mathscr{B}_{1}}(\Omega_{1})}^{2} \rho^{2(\beta_{T}-s)+n-d-1} d\rho \right)^{1/2},$$

а через $\gamma E_{s, \mathcal{B}_T}(K^{n-d})$ — пространство следов функций из $E_{s, \mathcal{B}_T}(K^{n-d})$ на объединении (n-d-1)-мерных стратов ∂K^{n-d} . Оператор $\mathring{\mathfrak{A}}$, определен-

ный на
$$\prod_{j=1}^k E_{\mathfrak{s}+t_j}, \mathscr{B}_T(K^{n-d})$$
, непрерывно действует в $\prod_{i=1}^k E_{\mathfrak{s}-\mathfrak{s}_i}, \mathscr{B}_T(K^{n-d}) \times \prod_{i=1}^r \gamma E_{\mathfrak{s}-\sigma_i}, \mathscr{B}_T(K^{n-d})$.

И емм а 1. Оператор \mathfrak{A} нётеров в том и только в том случае, если для всех \mathfrak{q} , $|\mathfrak{q}|=1$, оператор $\mathfrak{A}(\xi^{(0)},0;\mathfrak{o}\mathfrak{q},\mathfrak{o}D_{\mathfrak{o}})$ осуществляет изоморфизм при любом $x^{(0)} \in M^1 \cup \ldots \cup M^{n-2}$ и является нётеровым при $x^{(0)} \in M^0$.

 $\hat{\mathbf{M}}$ вмма 2. Для того чтобы при достаточно больших $|\hat{\boldsymbol{\xi}}|$ оператор $\mathfrak{A}(\boldsymbol{\xi})$ был изоморфизмом и выполнялось неравенство

$$\sum_{j=1}^{k} \|u_j\|_{H_{s+l_j,\mathcal{B}}}(\xi,\Omega) \leqslant c \left\{ \sum_{i=1}^{k} \|(L(\xi)u)_i\|_{H_{s-s_i,\mathcal{B}}(\xi,\Omega)} + \sum_{i=1}^{r} \|(\gamma B(\xi)u)_i\|_{\gamma H_{s-\sigma_i,\mathcal{B}}(\xi,\Omega)} \right\}$$

 ${\mathfrak C}$ постоянной ${\mathfrak C}$, не зависящей от ${\mathfrak F}$, необходимо и достаточно, чтобы для всех ${\mathfrak F}$, ${\mathfrak H}$, $|{\mathfrak F}|^2+|{\mathfrak H}|^2=1$, операторы ${\mathfrak A}({\mathfrak F}^{(0)},0;\, {\mathfrak O}{\mathfrak F},\, {\mathfrak O}{\mathfrak H},\, {\mathfrak O}{\mathfrak D}_{\mathfrak o})$ осуществляли изоморфизмы, какова бы ни была точка $x^{(0)} \in M^0 \cup \ldots \cup M^{n-2}$.

Если оператор $\mathring{\mathfrak{A}}(\xi^{(0)}, 0; 0, \lambda)$ удовлетворяет условиям: а) при больших $|\lambda|$, $\lambda \in R^1$: $\mathring{\mathfrak{A}}(0, \lambda)$ — изоморфизм; б) справедлива оценка

$$\sum_{j=1}^{k} \|u_{j}\|_{H_{s+t_{j}}, \mathcal{B}_{1}(\lambda, -\Omega_{1})} \leqslant c \left\{ \sum_{i=1}^{k} \|(\mathring{L}(0, \lambda) u)_{i}\|_{H_{s-s_{i}}, \mathcal{B}_{1}(\lambda, \Omega_{1})} + \sum_{i=1}^{r} \|(\gamma \mathring{B}(0, \lambda) u)_{i}\|_{\forall H_{s-\sigma_{i}}, \mathcal{B}_{1}(\lambda, \Omega_{1})} \right\}.$$

с постоянной c, не зависящей от λ , то $[\mathfrak{A}(0,\lambda)]^{-1}$ является мероморфной оператор-функцией, полюсы которой (за исключением разве лишь конечного числа) расположены внутри некоторого двойного узла, содержащего мнимую ось.

Лемма 3. Оператор $\mathfrak{A}(\rho \eta, \rho D_{\rho})$ нётеров в том и только в том случае, когда выполнены условия а) и б) и прямая $\operatorname{Im} \lambda = s - (n - d + \beta_T)/2$ не содержит полюсов $[\mathfrak{A}(0, \lambda)]^{-1}$, где T – страт, содержащий $x^{(0)}$. Лемма 4. Для выполнения условий а) и б) необходимо и достаточно,

 Π емма 4. Для выполнения условий а) и б) необходимо и достаточно, чтобы для любой точки y_0 , расположенной на δ -мерном страте границы K^{n-d} , $0 < \delta < n-1$, модельный оператор, порожденный оператором $\mathfrak{A}(0, \rho D_{\rho})$, был нётеровым (был изоморфизмом).

В силу лемм 1—3 проверка нётеровости оператора $\mathfrak A$ (обратимости оператора $\mathfrak A$ (ξ) при больших $|\xi|$) на n-мерном многообразии Ω свелась к последовательной проверке условий леммы 3 для операторов (с параметрами) на многообразиях меньшего числа измерений (при априорных предположениях о тривиальности ядра и коядра любой модельной задачи). Используя лемму 4, можно расшифровать эту схему следующим образом. Пусть T-d-мерный страт $\partial\Omega$ и $T_0,\ldots,T_l=T$ - цепочка стратов, $T_k \in \operatorname{st}(T_l), \ k>j$. В любой системе координат $(\xi_0,\ \rho_0,\ldots,\ \xi_l,\ \rho_l,\ \alpha_l),\ \alpha_l \in \Omega_{l+1}$, оператор $P \in O(p,m,\Omega)$ имеет вид

$$P = \hat{\rho}_l^{-p} \sum_{|M_l| + |N_l| \leqslant p} P_{M_l, N_l} (\mathbf{Z}_l, R_l) \left(\hat{R}_l D_{\mathbf{Z}_l} \right)^{M_l} (R_l D_{R_l})^{N_l},$$

где $\hat{\rho}_j = \rho_j, \ldots, \rho_0, \hat{R}_l = \{\hat{\rho}_0, \ldots, \hat{\rho}_l\}, P_{M_l, N_l} \in \mathcal{O}(p-|M_l|-|N_l|, m, \Omega_{l+1}).$ Обобщая данное ранее определение модельного оператора, каждому набо-

ру $(\mathbf{Z}_{l}^{(0)}, 0) = (\zeta_{0}^{(0)}, 0, \dots, \zeta_{l}^{(0)}, 0)$ сопоставим модельный $R_{+}^{1} \times \Omega_{l+1}$: оператор

$$\mathring{P} = \sum_{|M_I|+|N_I| \leqslant p} P_{M_I, N_I}(\mathbf{Z}_l^{(0)}, 0) \left(\rho H\right)^{\Gamma_I} \left(\rho \mathbf{D}_{\rho}\right)^{\mathsf{v}_I},$$

где $H \in R^{d_0+\ldots+d_l+l}, \ d=d_l, \ \Gamma_l=\{\mu_0,\ \nu_0,\ldots,\ \mu_{l-1},\ \nu_{l-1},\ \mu_l\}$. Естественно определяются операторы $\mathfrak{A}_d(Z_l^{(0)},\ 0;\ \rho H,\ \rho D_\rho)$ модельных краевых задач в $R_{+}^{-1} \times \Omega_{l+1}$. Если $\mathfrak A$ зависит от параметра ξ , то в определении $\mathring{\mathfrak A}$ следует заменить H на (H, ξ) . По определению, набор чисел $\mathscr B$ является допусти-

мым, если он удовлетворяет следующему условию. Каждому (n-2)-мерному страту T сопоставляется число β_T такое, что прямые $\text{Im } \lambda = s - 1 - \beta_T$ не содержат полюсов операторов $[\mathring{\mathfrak{A}}_{n-2}(0, \lambda)]^{-1}$, связанных со стратом T. Предположим, что $\ker \mathfrak{A}_{n-2}(\rho H, \rho D_{\rho}) = 0$, со $\ker \mathfrak{A}_{n-2}(\rho H, \rho D_{\rho}) = 0$ для всех операторов $\mathfrak{A}_{n-2}(\rho H, \rho D_{\rho})$. Тогда, по лемме 4, операторы $\mathfrak{A}_{n-3}(0,\lambda)$ удовлетворяют условиям а) и б), где набор \mathfrak{B}_{1} однозначно определен показателями β_T (n-2)-мерных стратов. Допустим, что показатели всех стратов размерности d > n - k выбраны так, что для операторов $\mathring{\mathfrak{A}}_{n-k}(0,\lambda)$ выполнены условия а), б), где набор \mathscr{B}_1 однозначно определен показателями d-мерных стратов. Пусть показатели (n-k)-мерных стратов T выбраны так, что прямые $\operatorname{Im} \lambda - s - \beta_T - k/2$ не содержат полюсов $[\mathring{\mathfrak{A}}_{n-k}(0,\lambda)]^{-1}$ и ядро, и коядро любого оператора, $\mathfrak{A}_{n-h}(\rho H, \rho D_{\rho})$ тривиальны. Тогда, по лемме 4, все операторы $\mathfrak{A}_{n-h-1}(0, \lambda)$ удовлетворяют условиям а), б). Если так удается пройти все размерности $d=n-2,\ldots,\ 1,\ 0,\ ext{то}$ получается допустимый набор ${\mathscr B}.$ Если при построении \mathscr{B} не требовать тривнальности ker $\mathring{\mathbb{A}}_{\mathfrak{d}}$ и coker $\mathring{\mathbb{A}}_{\mathfrak{d}}$, то получим набор, допустимый в слабом смысле.

T е о р е м а . Оператор $\mathfrak A$ ($\mathfrak A(\xi)$) является нётеровым (изоморфизмом при больших $|\xi|$) в том и только в том случае, когда набор \mathscr{B} допустимый в слабом смысле (допустимый).

Асимптотические представления решения вблизи страта имеют вид,

аналогичный указанному в (11) для случая (n-2)-мерного ребра. 4° . Связь с задачей Римана— Гильберта. По-видимому, неизвестно, можно ли в общей ситуации найти содержательные условия тривиальности ядра и коядра модельной задачи. В частных случаях (для сильно эллиптических задач, для задачи с косой производной и некоторых других) такие условия найдены (см. (5, 10, 11)). Отметим, что исследование модельной задачи сводится к изучению задачи Римана — Гильберта на полупрямой с вполне непрерывным операторным коэффициентом.

Ленинградский государственный университет им. А. А. Ждапова

Поступило 4 VI 1972.

Ленинградский институт текстильной и легкой промышленности им. С. М. Кирова

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Кондратьев, Тр. Московск. матем. общ., 16, 209 (1967). ² Г. И. Эскин, Тр. Московск. матем. общ., 21, 245 (1970). ³ М. И. Вишик, Г. И. Эскин, УМН, 22, в. 1, 15 (1967). ⁴ М. И. Вишик, Г. И. Эскин, Сиб. матем. журн., 9, № 5, 973 (1968). ⁵ В. А. Кондратьев, Дифференциальные уравнения, 6, № 10, 1831 (1970). ⁶ М. И. Вишик, В. В. Грушин, Матем. сборн., 79, № 1, 3 (1969). ⁷ В. В. Грушин, Матем. сборн., 84, № 2, 163 (1971). ⁸ Чан Зуй Хо, Г. И. Эскин, ДАН, 198, № 1, 50 (1971). ⁹ В. И. Фейгин, УМН, 27, в. 2, 183 (1972). ¹⁰ В. Г. Мазья, Б. А. Пламеневский, Функц. анализ, 5, в. 3, 402 (1971). ¹¹ В. Г. Мазья, Б. А. Пламеневский, Тр. симпозиума по механике сплошной среды. Тбилиси, 1972. ¹² Б. Ю. Стернин, ДАН, 189, № 4, 732 (1969). ¹³ В. Г. Мазья, Б. А. Пламеневский, Изв. высш. учебн. завед., Математика, 11 (126), 46 (1972). 46 (1972).