УДК 547.244.245 ХИМИЯ

В. Ф. МИРОНОВ, В. И. ГРИГОС, С. Я. ПЕЧУРИНА, А. Ф. ЖИГАЧ, В. Н. СИРЯТСКАЯ

ПОЛУЧЕНИЕ НОВОГО КЛАССА КРЕМНИЙСОДЕРЖАЩИХ КАРБОРАНОВ ВЗАИМОДЕЙСТВИЕМ ВИНИЛТРИХЛОРСИЛАНА С o-, m- И n-КАРБОРАНАМИ

(Представлено академиком А. Н. Несмеяновым 1 XII 1972)

До последнего времени кремнийсодержащие карбораны могли быть получены или конденсацией С-металлоорганических производных карборанов с силанхлоридами или присоединением кремнийгидридов к С-алкенилкарборанам (1). В обоих случаях образуются соединения, в которых кремнийсодержащий радикал был связан с углеродным атомом карборанового ядра.

Мы уже предварительно сообщали, что винилтрихлорсилан в присутствии катализаторов реакции Фриделя— Крафтса кремнеэтилирует карборановое ядро по В—Н-связи (2).

$$RC-B_{10}H_{10}CR + CH_2=CHSiCl_3 \frac{AlCl_3}{80-120^{\circ}} RCB_{10}H_{10-n}CR$$
,

где R=H; изо-Pr, Ph; n = 1, 2, 3.

Катализаторы этой реакции по активности можно расположить в виде

$$AlCl_3 \! \geqslant \! AlBr_3 \! > \! BF_3 \! \cdot \! Et_2O \! > \! SnCl_4 \! \gg FeCl_3.$$

Хлорное железо оказалось неактивным.

Независимо от соотношения исходных реагентов, образуется смесь моно- (n=1) и ди- (n=2) кремнеэтильных производных карборанового ядра, легко разделимая перегонкой, особенно после метилирования:

$$\begin{array}{ccc} \operatorname{RCB_{10}H}_{10-n}\mathrm{CH} & \xrightarrow{\operatorname{CH_3MgJ}} & \operatorname{RCB_{10}H}_{10-n}\mathrm{CH} \\ (\operatorname{CH_2CH_2SiCl_3})_n & & [\operatorname{CH_2CH_2Si(CH_3)_3}]_n, \end{array}$$

где n = 1, 2.

Трисилилзамещенный карборан удалось выделить наряду с монои дисилилзамещенными карборанами в случае *п*-карборана, если полученную реакционную смесь без предварительной разгонки обработать метилмагнийиодидом. После выделения моносилилзамещенного (X) и дисилилзамещенного карборанов (XII) разгонкой в остатке был получен три-[β-(трихлорсилил)-этил]-*п*-карборан (XIIa) в виде светло-желтой, прозрачной, очень вязкой жидкости.

Строение β-силилэтильного радикала и связь его именно с атомом бора, а не с атомом углерода карборанового ядра было доказано на основании анализа спектров и.-к., п.м.р. и масс-спектров (3).

В и.-к. спектрах как моно-, так дисилилзамещенных карборанов интенсивность полосы поглощения СН-связи в карборане не изменяется (3080 см⁻¹). Это указывает на то, что мы имеем дело с В-замещенными силилкарборанами. На рис. 1 представлено несколько характерных и.-к. спектров В-силилзамещенных карборанов.

Кроме того, часть из полученных соединений была введена в реакцию с реагентами, реагирующими с активным водородом (С—Н) карборанового ядра. С этой целью мы использовали недавно обнаруженную нами (4) ре-

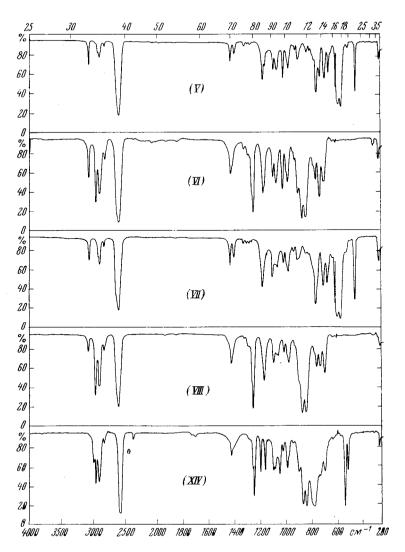


Рис. 1. И.-к. спектры В-силилзамещенных карборанов. Номера соответствуют номерам веществ в табл. 1

акцию карборанов со станниламинами и отметили выделение расчетного количества диэтиламина

$$\begin{array}{ccc} \text{HCB}_{10}\text{H}_9\text{CH} + 2\text{Me}_3\text{SnNEt}_2 \rightarrow & \text{Me}_3\text{SnCB}_{10}\text{H}_9\text{CSnMe}_3 + \text{Et}_2\text{NH} \\ \downarrow & \downarrow & \downarrow \\ \text{CH}_2\text{CH}_2\text{SiMe}_3 & \text{CH}_2\text{CH}_2\text{SiMe}_3 \end{array}$$

В и.-к. спектре соединения XIV отсутствует полоса поглощения C-H-связи карборанового ядра и имеются полосы поглощения $Sn-CH_3$ -связи (см. рис. 1).

Реакция с гриньяровыми реагентами, проведенная в приборе Церевитинова, позволила по объему выделившегося углеводорода количественно определить наличие СН-связей в полученных карборанах:

$$\begin{array}{ccc} \operatorname{HCB_{10}H_{10-n}CH} + \operatorname{RMgJ} \to \operatorname{JMgCB_{10}H_{10-n}CMgJ} + \operatorname{RH}, \\ & \downarrow & \downarrow & \downarrow \\ & (\operatorname{CH_2CH_2SiMe_3})_n & (\operatorname{CH_2CH_2SiMe_3})_n \end{array}$$

где R = Me, Et.

Так же была проведена реакция винилтрихлорсилана с 1,2-дифенил-окарбораном и выделен соответствующий силилзамещенный карборан. И в

Свойства силилзамещенных карборанов $HCB_{10}H_{10-n}$ (R) $_nCH$

R	n	Т. кип., °C (мм)	n_D^{20}	d_4^{20}	Вы- ход, %	Найдено, %						Вычислено, %				
						С	н	В	Si	CI	Брутто-формула	G	н	В	Si	Cl
				П	роизі	водні	ые о-	карб	оран	a						
I. CH ₂ CH ₂ SiCl ₃	1	138— 142(1) т. ил. 29—31	1,5477		56	15,63	5,01	34,70	8,80	33,90	$\mathrm{C_4H_{15}B_{10}SiCl_3}$	15,72	4,94	35,36	9,19	34,79
II. CH2CH2SiMe3 III. CH2CH2SiCl3	1 2	120—123(1,5) 190—191(1,5)	1,5216 1,5435	0,9041	60	35,05		45,90 22,90			C ₇ H ₂₄ B ₁₀ Si C ₆ H ₁₈ B ₁₀ Si ₂ Cl ₆	34,39	9,89	44,22 23,14	11,50 12,02	45,53
IV. CH ₂ CH ₂ SiMe ₃	2	162—164(1,5) т. пл. 34—36				40,43	10,52		15,33	44,70	$C_{12}H_{36}B_{10}Si_2$	41,81	10,53	31,36	16,29	
				П	роизі	водны	ле <i>м</i> -	карб	оран	a						
V. CH ₂ CH ₂ SiCl ₃ VI. CH ₂ CH ₂ SiMė ₃		105—109(1) 91,5—92(1,5) т. заст. —30—32	1,5380 1,5145		60 76	15,94 34,69		$\begin{vmatrix} 35,50 \\ 44,80 \end{vmatrix}$		34,80	C ₄ H ₁₅ B ₁₀ SiCl ₃ C ₇ H ₂₄ B ₁₀ Si C ₆ H ₁₈ B ₁₀ Si ₂ Cl ₆	15,72 34,39		35,36 44,22		34,79 45,53
VII. $\mathrm{CH_2CH_2SiCl_3}$ VIII. $\mathrm{CH_2CH_2SiMe_3}$		170—171(1,5) 129—131(1)	1,5405 1,5036		71	41,21	10,26	22,70 32,40	11,90 15,90		C ₁₂ H ₃₀ B ₁₀ Si ₂	41,81	1 0,53		16,29	40,00
				П	роиз	водн	ые п	-карб	оран	a						
IX. CH ₂ CH ₂ SiCl ₃ X. CH ₂ CH ₂ SiMe ₃ XI. CH ₂ CH ₂ SiCl ₃	$\begin{vmatrix} 1\\1\\2 \end{vmatrix}$	1	1,5341 1,5110 1,5367	0,8927	32 75	16,60 34,34 15,87	9,79)	40.30	34,53 42,00	C ₇ H ₂₄ B ₁₀ Si	15,72 34,39 15,42	9,89		$\begin{vmatrix} 9,19 \\ 11,50 \\ 12,02 \end{vmatrix}$	
XII. CH ₂ CH ₂ SiMe ₃ * XIIa. CH ₂ CH ₂ SiMe ₃	$\begin{vmatrix} 2\\2\\3 \end{vmatrix}$	132—134(2)	1,5025 1,5195	0,8889	70	42,53	10,70		10,00	42,00	C ₁₂ H ₃₆ B ₁₀ Si ₂ C ₁₇ H ₄₉ B ₁₀ Si ₃	41,81	10,53	31,36	16,29 18,89	45,00

этом случае кремпеэтилирование протекает только по B-H-связи карборанового ядра, не затрагивая фенильные кольца:

Продукты кремпертилирования карборанов и их метильные аналоги представляют собой бесцветные, перегоняющиеся в вакууме жидкости. Трихлорсилильные производные легко гидролизуются на воздухе, в то же время их триметильные аналоги устойчивы и в течение длительного времени могут храниться на воздухе без изменения.

Свойства и данные анализа синтезированных соединений представлены в табл. 1.

Все операции по синтезу кремнийсодержащих карборанов проводили в атмосфере сухого азота. Чистота синтезированных соединений контролировалась с помощью г.ж.х. на хроматографе ЛХМ-7А (длина колонки 2 м, 10 % ПМС-15 000 на хромосорбе W, 225—275° С, газ-носитель — гелий).

В - (β - трихлорсилилэтил) - о - карборан (1) и бис - В - (трихлорсилилэтил) - о - карборан (III). К 15,4 г о-карборана в присутствии 7,1 г хлористого алюминия при перемешивании добавляли 17,2 г винилтрихлорсилана. Реакционную смесь постепенно нагревали до 120° и выдерживали при этой температуре два часа. После охлаждения реакционной массы до 30° добавляли 8,2 г РОСІ₃ и затем 200 мл сухого гексана. Гексановый раствор сливали, отгоняли гексан, а остаток перегоняли в вакууме. Получено 18,1 г вещества I и 3,8 г III.

Аналогичным образом были получены соединения II, IV-XII (см. табл. 1).

1 - Й зопропил - В - (β - трихлорсилилэтил) - o - карборан (XIII). По этой же методике из 16,2 г винилтрихлорсилана и 18,6 г 1-изопропилкарборана в присутствии 6,7 г безводного AlCl₃ получено 12,8 г (выход 37%) XIII с т. кип. 161—165° (1 мм), n_p^{20} 1, 5395.

1,2-Бис-(триметилстаннил) - В - (β - триметилсилилэтил) - м-карборан (XIV). К 14,7 г триметилдиэтиламиностаннана добавляли 5,3 г VI и выдерживали смесь при 130—160° до прекращения выделения диэтиламина. После перегонки остатка в вакууме получено 11,2 г (выход 81%) XIV с т. кип. 170—176° С (7,5 мм), т. пл. 95—97° (из спирта) в виде белых блестящих игольчатых кристаллов.

Найдено %: С 27,85; Н 7,36; В 19,50; Si 4,93; Sn 40,80
$$C_{13}H_{40}B_{10}SiSn_2$$
. Вычислено %: С 27,39; Н 7,07; В 18,97; Si 4,93; Su 41,64

1,2 – Дифенил – В – ди[β – (трихлорсилил) – этил] – o – карборан (XV). К 11 г 1,2-дифенил-o-карборана в присутствии 2,68 г безводного AlCl₃ добавили 3,5 г винилтрихлорсилана и грели 1 час при $75-100^\circ$. После обычной обработки реакционной смеси получено 4,5 г (выход 70% от теории) вещества XV в виде коричневой очень вязкой жидкости (при комнатной температуре течет) с n_D^{20} 1,5961.

Поступило 17 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. N. Grimes, Carboranes, N. Y.— London, 1970. ² B. Ф. Миронов, В. И. Григос и др., ЖОХ, 42, 2583 (1972). ³ В. Н. Бочкарев, А. Н. Поливанов и др., ЖОХ, 43, в. 3, 681 (1973). ⁴ В. И. Григос, А. Ф. Жигач, В. Ф. Миронов, Хим. гетероциклич. соед., № 7, 998 (1971).