УДК 513.88+519.55

MATEMATUKA

В. Л. ЛЕВИН

СУБДИФФЕРЕНЦИАЛЫ ВЫПУКЛЫХ ИНТЕГРАЛЬНЫХ ФУНКЦИОНАЛОВ И ЛИФТИНГИ, ТОЖДЕСТВЕННЫЕ НА ПОДПРОСТРАНСТВАХ \mathscr{L}^{∞}

(Представлено академиком Л. В. Канторовичем 7 XII 1972)

В заметке сообщаются новые результаты об интегральном представлении субдифференциалов выпуклых функционалов вида

$$I_{f}[x(\cdot)] = \int_{T} f(t, x(t)) \mu(dt), \qquad x(\cdot) \in L_{x}^{\infty}(T, \Sigma, \mu)$$

и указывается их связь с проблемой существования линейных лифтингов,

тождественных на заданном подпространстве $H \subset \mathscr{L}^{\infty}(T, \Sigma, \mu)$.

Далее везде (T, Σ, μ) — пространство с неотрицательной о-конечной мерой; \mathfrak{X} — вещественное банахово пространство; $L_{\mathfrak{X}}^{\infty} = L_{\mathfrak{X}}^{\infty} (T, \Sigma, \mu)$ — банахово пространство (классов эквивалентных относительно μ) ограниченных сильно измеримых вектор-функций $x(\cdot)$: $T \to \mathfrak{X}$ с нормой $\|x(\cdot)\|_{\infty} = \text{vrai max } \|x(t)\|_{\mathfrak{X}}$; $L^{\infty} \otimes \mathfrak{X}$ — замыкание в $L_{\mathfrak{X}}^{\infty} (T, \Sigma, \mu)$ множест-

ва конечномерных вектор-функций.

Функция $f(t,x): T \times G \to \mathbb{R}^1$ (где $G \subset \mathfrak{X}$ выпукло и обладает внутренностью int $G = \emptyset$) предполагается выпуклой по x и непрерывной в $x_0 \in$ \in int G для всякого $t \in T$ и измеримой по t для всякого $x \in G$. Положим $x_0(t) = x_0$ $\forall t \in T$.

 1° . Напомним, что субдифференциалом выпуклой функции $g \colon U \to \mathbf{R}^{\circ}$ ($U - \mathbf{выпуклое}$ подмножество банахова пространства \mathfrak{F}) в точке $y_{\circ} \in \text{int } U$ называется множество

$$\partial g(y_0) = \{ y' \in \mathfrak{Z}' | \langle y - y_0, y' \rangle \leq g(y) - g(y_0) \quad \forall y \in U \}.$$

Теорема 1. Следующие предположения эквивалентны:

1) Функционал I_t определен для всех $x(\cdot)$ из некоторой окрестности $x_0(\cdot)$ в L^∞_x и непрерывен в $x_0(\cdot)$.

2) Функционал I_i непрерывен в $x_0(\cdot)$ относительно сходимости почти всюду, т. е. существует окрестность $V[x_0(\cdot)] \subset L^\infty_x$ такая, что

$$\{x_n(\cdot)\}\subset V[x_0(\cdot)], \quad x_n(t)\to x_0(t) \quad n.s.\Rightarrow I_t[x_n(\cdot)]\to I_t[x_0(\cdot)].$$

- 3) Функция f(t,x(t)) суммируема для всякой $x(\cdot)$ из некоторой окрестности $x_0(\cdot)$ в L_x^{∞} .
- 4) Существуют $\varepsilon > 0$ и суммируемая функция r(t) > 0 такие, что $S_{\varepsilon}(x_0) = \{x \in \mathfrak{X} \mid \|x x_0\| \leq \varepsilon\} \subseteq G$ и для всякого $x \in S_{\varepsilon}(x_0) \quad |f(t,x)| \leq r(t)$ n.в. на T.

Если выполняется какое-нибудь одно из условий 1), 2), 3), 4) (и, следовательно, выполняются все четыре условия), то существует функция $\tilde{f}(t,x)$: $T \times S_{\varepsilon}(x_0) \to \mathbf{R}^1$ с такими свойствами:

a) $ilde{f}(t,x)$ выпукла по x и непрерывна в x_0 для всякого $t \in T$ и изме-

рима по t для всякого $x \in S_{\varepsilon}(x_0)$.

- б) Для всякого $x \in S_{\varepsilon}(x_0)$ $\tilde{f}(t,x) = f(t,x)$ п.в. на T.
- B) $I_{\tilde{f}}[x(\cdot)] = I_{f}[x(\cdot)]$ ha $V_{\varepsilon}[x_{0}(\cdot)] = \{x(\cdot) \in L_{\tilde{x}}^{\infty} | \|x(\cdot) x_{0}(\cdot)\|_{\infty} \leqslant \varepsilon\}.$
- г) Для любого подпространства $\mathfrak{I} \subseteq L_{\mathfrak{X}}^{\infty}$, содержащего $x_{\mathfrak{o}}(\cdot)$, субдифреренциал $\partial I_{\mathfrak{f}}^{\mathfrak{F}}\left[x_{\mathfrak{o}}(\cdot)\right]$ ($I_{\mathfrak{f}}^{\mathfrak{F}}$ обозначает ограничение $I_{\mathfrak{f}}$ на \mathfrak{I}) есть множество функционалов $y' \subseteq \mathfrak{I}'$, допускающих представление

$$\langle x(\cdot),y'\rangle=\int_{T}\langle x(t),x'(t)\rangle\mu(dt)\quad \forall x(\cdot)\in\mathfrak{J},$$

еде $x'(t) \in \partial \tilde{f}(t, x_0)$ для всех $t \in T$, функция $x'(\cdot) \colon T \to \mathfrak{X}'$ слабо измерима $u \| x'(\cdot) \|_{\mathfrak{X}'} \in L^1 = L^1(T, \Sigma, \mu)$.

Будем говорить, что для субдифференциала $\partial I_f^{\mathfrak{F}}[x_0(\cdot)]$ существует регулярное интегральное представление, если $\partial I_f^{\mathfrak{F}}[x_0(\cdot)]$ состоит из функционалов y', допускающих представление r) с f(t,x)=f(t,x) $\forall t\in T,\ x\in G$. Регулярные интегральные представления изучались многими авторами (подробная библиография имеется в (1)). Далее мы укажем связь этих представлений с существованием специальных линейных лифтингов на $\mathscr{L}^{\infty}(T,\Sigma,\mu)$.

2°. Обозначим через $\mathscr{L}^{\infty}=\mathscr{L}^{\infty}(T,\Sigma,\mu)$ банахово пространство ве-

 2° . Обозначим через $\mathscr{L}^{\infty} = \mathscr{L}^{\infty}(T, \Sigma, \mu)$ банахово пространство вещественных ограниченных измеримых функций на T с нормой $\|\phi\|_{\mathscr{L}_{\infty}} = \sup_{t \in T} |\phi(t)|$. Напомним (см. $(^2, ^3)$), что линейным лифтингом \mathscr{L}^{∞} называется линейное отображение $\rho: \mathscr{L}^{\infty} \to \mathscr{L}^{\infty}$ со следующими

свойствами:

I. $\rho(\varphi)(t) = \varphi(t)$ п.в.

II. $\rho(1) = 1$, где $1 - \phi$ ункция на T, равная тождественно 1.

III. $\varphi(t) \ge 0$ n.b. $\Rightarrow \varphi(\varphi)(t) \ge 0$ $\forall t \in T$.

Пусть H — линейное подпространство в \mathscr{L}^{∞} и $1 \in H$. Будем называть H-л и ф т и н г о м линейный лифтинг \mathscr{L}^{∞} , тождественный на H. Если (T, Σ, μ) — вполне регулярное топологическое пространство с борелевской мерой, а $H = C^b(T)$ — пространство ограниченных непрерывных функций на T, то H-лифтинг — это сильный линейный лифтинг \mathscr{L}^{∞} (см. $(^2)$).

Рассмотрим два условия на H:

 α) $h \in \hat{H} \ u \ h(t) \geqslant 0 \ n.s. \Rightarrow h(t) \geqslant 0 \quad \forall t \in T.$

Согласно свойству III условие α) необходимо для существования H-лифтинга. Если выполняется α), то можно отождествить H с подпространством L^{∞} , относя каждой функции $h \in H$ тот класс эквивалентных функций $[h] \in L^{\infty}$, в который она входит.

eta) Имеет место lpha) и для всякого ограниченного сверху в L^{∞} множества $Q \subset H$ выполняется равенство $\sup_{L_{\infty}} Q = [\phi]$, где $\phi(t) = \sup\{h(t) | h \in A(t)\}$

 $\subseteq Q$, $[\varphi]$ - образ φ при каноническом гомоморфизме $\mathscr{L}^{\infty} \to L^{\infty}$.

Предложение 1. Если H сепарабельно и удовлетворяет α), то существует H-лифтинг.

Предложение 2. Пусть $\mu(T \setminus \bigcup_{n=1}^{\infty} T_n) = 0$, где $T_n \in \Sigma$, $n = 1, 2, \ldots$ Обозначим через H_n подпространство $\mathcal{L}^{\infty}(T_n)$, состоящее из ограничений на T_n функций $h \in H$. Предположим, что H удовлетворяет α).

Tогда из существования H_n -лифтингов на $\mathscr{L}^\infty(T_n)$ для всех n следует

существование H-лифтинга на \mathscr{L}^{∞} .

Предложение 3. Если существует Н-лифтинг, то Н удовлетво-

ряет условию в).

3°. Пусть выполняется α). Функция $\varphi \in \mathcal{L}^{\infty}$ называется H-вогнутой (ср. с (4)), если $\varphi(t) = \inf \{h(t) \mid h \in Q\}$, где $Q \subset H$ ограничено снизу в L^{∞} .

Предложение 4. Если выполняется β), то H-вогнутость $\phi \in \mathscr{L}^{\infty}$

равносильна равенству $\varphi(t)=\inf\left\{h\left(t\right)|h\geqslant\varphi\right.$ $n.в.,\ h\in H\}$ $\forall t\in T.$

Теорема 2. Предположим, что существует H-лифтинг и выполняются предположения теоремы 1. Кроме того, предположим следующее:

1) функция $t \to f(t, x)$ *H-вогнута* $\forall x \in S_{\varepsilon}(x_0)$;

2) существует измеримая функция $r_1(t) > 0$ такая, что $h/r_1 \in H$ для всякой $h \in H$ и $|f(t,x)| \le r_1(t)$ п.в. $\forall x \in S_{\varepsilon}(x_0)$.

Тогда для субдифференциала $\partial I_f^{\mathfrak{F}}[x_{\mathfrak{o}}(\cdot)]$, где $\mathfrak{F}-$ любое содержащее $x_{\mathfrak{o}}(\cdot)$ подпространство $L_{\mathfrak{X}}^{\mathfrak{F}}$, существует регулярное интегральное представление.

Из теоремы 2 вытекает ряд новых результатов о регулярных иштег-

ральных представлениях субдифференциалов.

Теорема 3. Регулярное интегральное представление субдифференциалов $\partial I^{\mathfrak{F}}[x_{0}(\cdot)]$, где $\mathfrak{F} \equiv x_{0}(\cdot)$, существует в каждом из следующих

случаев:

1) (T, Σ, μ) — метризуемое локально компактное пространство с мерой $Pa\partial$ она; функция $t \to f(t, x)$ полунепрерывна сверху для всякого $x \in S_{\varepsilon}(x_0)$; выполняются предположения теоремы 1; $\sup_{x \in S_{\varepsilon}(x_0)} |f(t, x)| \le r_1(t)$,

 $e\partial e r_1$ непрерывна.

2) (T, Σ, μ) — бикомпакт с конечной мерой Радона; f(t, x) непрерывна по t для всякого $x \in S_{\varepsilon}(x_0)$; $\sup_{x \in S_{\varepsilon}(x_0)} |f(t, x)| \leq \text{const}$ $\forall t \in T$; семейство

функций на T $\{f(\cdot,x) \mid x \in S_{\varepsilon}(x_0)\}$ равностепенно непрерывно.

Случай 1) теоремы 3 близок к одному результату А. Д. Иоффе (теорема 3.1 в (¹)), однако, в отличие от последнего, сепарабельность T здесь не предполагается (зато предполагается, что T локально-компактно). Следующий результат был ранее получен автором в частном случае $\mathfrak{F}=\mathfrak{X}$ (теорема 2.1 в (¹)).

 \hat{T} еорема 4. Пусть \hat{x} сепарабельно и f(t, x(t)) суммируема для вся-

кой $x(\cdot) \in V_{\varepsilon}[x_{\varepsilon}(\cdot)].$

Тогда для любого $\mathfrak{F} \Rightarrow x_0(\cdot)$ функционал $I_f^{\mathfrak{F}}$ непрерывен в $x_0(\cdot)$ и существует регулярное интегральное представление субдифференциала $\partial I_f^{\mathfrak{F}}[x_0(\cdot)]^*$.

4°. Для пространства с конечной мерой теорема 2 допускает обращение.

Предварительно заметим, что если I_f непрерывен в $x_0(\cdot)$, то из существования регулярного интегрального представления $\partial I_f[x_0(\cdot)]$ следует, в силу теоремы Хана — Банаха, существование регулярного интегрального представления $\partial I_f^{\mathfrak{F}}[x_0(\cdot)]$ для любого $\mathfrak{F} = x_0(\cdot)$. Обратное, вообще говоря, неверно.

Теорема 5. Предположим, что $\mu T < \infty$, а H удовлетворяет условию β). Возьмем $\mathfrak{X} = L^{\infty}(T, \Sigma, \mu), x_0 = 0, r(t) = \mathrm{const} > 0, \mathfrak{F} = L^{\infty} \hat{\otimes} \mathfrak{X}.$

Тогда существует функция $f(t, x) \colon T \times \mathfrak{X} \to \mathbb{R}^1$ со следующими свойствами:

м. 1) ј сублинейна по x и удовлетворяет всем предположениям теоремы 2;

2) I_{t} непрерывен на L_{x} ;

3) Существование регулярного интегрального представления для суббиффстенциала $\partial I_{\mathbf{x}}^{\mathbf{x}}$ [0] равносильно существованию H-лифтинга.

Замечание. Теорема 5 остается верна, если вместо конечности меры, предположить существование суммируемой функции $h_0(t) > 0$ такой, что $h_0 h \in H$ для всякой $h \in H$.

 5° . В доказательствах теорем 1, 2 и 4 используєтся существование разложения Лебега для непрерывных линейных функционалов на L_{x}^{∞} . Сформулируем теорему о разложении.

^{*} В случае $\mathfrak{I}=\mathfrak{X}$ достаточно предполагать суммируемость f(t,x) для всех $x\in \mathcal{S}_{\varepsilon}(x_0)$ ((1), теорема (2.1).

Функционал $\lambda \in L_{x}^{\infty'}$ называется абсолютно непрерывным относительно μ , если

$$\langle x(\cdot),\lambda\rangle=\int_{T}\langle x(t),x'(t)\rangle\,\mu\left(dt\right),\quad \forall x(\cdot)\!\in\!L_{\mathfrak{X}}^{\infty},$$

где $x'(\cdot)$: $T \to \mathfrak{X}'$ слабо измерима и $\|x'(\cdot)\|_{\mathfrak{X}'} \subseteq L^{\mathfrak{I}}$.

Функционал $\lambda \in L_{\mathfrak{X}}^{\infty'}$ называется сингулярным относительно μ , если существует последовательность множеств $T_n \in \Sigma$ такая, что $T_{n+1} \subset T_n$ для любого n, $\mu(T_n \cap T') \to 0$ при $n \to \infty$ для любого $T' \in \Sigma$ с $\mu T' < \infty$ и $\langle x(\cdot), \lambda \rangle = 0$ для всякой $x(\cdot) \in L_{\mathfrak{X}}^{\infty}$, обращающейся в нуль на каком-нибудь T_n .

Теорема 6. Каждый функционал $\lambda \in L_x^{\infty}$ единственным способом разлагается в сумму $\lambda = \lambda_1 + \lambda_0$, где λ_1 абсолютно непрерывен, а λ_0 сингулярен относительно μ . При этом $\|\lambda\| = \|\lambda_1\| + \|\lambda_0\|$.

В (1) приведено доказательство этой теоремы в случае, когда $\mu T < \infty$,

а ж сепарабельно.

Центральный экономико-математический институт Академии наук СССР Москва

Поступило 2 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Д. Иоффе, В. Л. Левин, Тр. Московск. матем. общ., 26, 3 (1972).
² А. Іопезси Tulcea, С. Іопезси Tulcea, Topics in the Theory of Lifting, Berlin—Heidelberg—N. Y., 1969. ³ N. Dinculeanu, Vector Measures, 1967.
⁴ С. С. Кутателадзе, А. М. Рубинов, УМН, 27, № 3, 127 (1972).