ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

О. П. МЧЕДЛОВ-ПЕТРОСЯН, В. В. САВЕНКОВ, В. Л. ЧЕРНЯВСКИЙ

ВЛИЯНИЕ КОНЦЕНТРАЦИИ ВОДОРОДНЫХ ИОНОВ НА РАСТВОРИМОСТЬ ГИДРОСИЛИКАТОВ КАЛЬЦИЯ

(Представлено академиком С. И. Вольфковичем 20 XI 1972)

Гидросиликаты кальция (ГСК) определяют свойства материалов, полученных в результате минеральных превращений в системе CaO — SiO₂ — H₂O. В этой связи определенный интерес представляет вопрос о растворимости ГСК в водной среде (рН 40—12,5), характерной для реальных условий, в которых существуют силикатные или цементные строительные материалы. Расчет растворимости ГСК в зависимости от величины рН равновесного раствора проводился с учетом диссоциации ГСК

Таблица 1 Уравнения закона действующих масс для Са (ОП)₂ и ГСК в водных растворах

№№ 11.11.	Стехиометрическан формула	$a \lg [\operatorname{Ca}^{2+}] + b \lg [\operatorname{SiO}_{3}^{2-}] + c \operatorname{pH} := \lg K$
1 2 3 4 5	Ca (OH) ₂ 3CaO · 2SiO ₂ · 3H ₂ O CaO · 2SiO ₂ · 0,67H ₂ O 6CaO · 6SiO ₂ · H ₂ O 5CaO · 6SiO ₂ · 5.5H ₂ O	$\begin{array}{c} \lg \operatorname{Ca^{2+}} + 2 \mathrm{pH} = 22.9 \\ 3 \lg \operatorname{Ca^{2+}} + 2 \lg \operatorname{SiO_3^{2-}} + 2 \mathrm{pH} = 17.73 \\ \lg \operatorname{Ca^{2+}} + 2 \lg \operatorname{SiO_3^{2-}} - 2 \mathrm{pH} = -32.05 \\ \lg \operatorname{Ca^{2+}} + \lg \operatorname{SiO_3^{2-}} = -5.89 \\ 5 \lg \operatorname{Ca^{2+}} + 6 \lg \operatorname{SiO_3^{2-}} = -61.58 \end{array}$
6 7 8	4CaO·3SiO ₂ ·4,5H ₂ O 2CaO·SiO ₂ ·1,17H ₂ O 2CaO·3SiO ₂ ·2,5H ₂ O	$ \begin{array}{l} 4 \lg \operatorname{Ca^{2+}} + 3 \lg \operatorname{SiO_3^{2-}} + 2 \mathrm{pH} = 2,4 \\ 2 \lg \operatorname{Ca^{2+}} + \lg \operatorname{SiO_3^{2-}} + 2 \mathrm{pH} = 15,69 \\ 2 \lg \operatorname{Ca^{2+}} + 3 \lg \operatorname{SiO_3^{2-}} - 2 \mathrm{pH} = -40,72 \end{array} $

на ионы Ca^{2+} , SiO_3^{2-} , $HSiO_3^{-}$, $Si_2O_5^{2-}$ и H_2SiO_3 , так как концентрация нонов $Ca(OH)^+$, $HSi_2O_5^-$, $HSi_2O_6^{3-}$ в этих условиях на несколько порядков меньше.

Константы диссоциации ГСК рассчитывались по термодипамическим данным (1), для метакремневой кислоты использованы величины констант, полученные Роллером и Эрвппом (2). Расчет проводился с учетом образования дисиликатных нопов.

$$K_{1} = \frac{(\mathrm{H}^{+}) (\mathrm{HSiO}_{3}^{-})}{(\mathrm{H}_{2}\mathrm{SiO}_{3})} = 10^{-9.8},$$

$$K_{2} = \frac{(\mathrm{H}^{+}) (\mathrm{SiO}_{3}^{2-})}{(\mathrm{HSiO}_{3}^{-})} = 10^{-12.16},$$

$$K_{3} = \frac{(\mathrm{Si}_{2}\mathrm{O}_{5}^{2-})}{(\mathrm{HSiO}_{3}^{-})^{2}} = 10^{3.34}.$$
(1)

Уравнения (1) позволяют выразить концентрацию любого иона кремневой кислоты, например [SiO₃²⁻], через констапты K_1 , K_2 , K_3 и суммарную концентрацию C кремпевой кислоты в растворе:

$$C = [SiO_3^{2-}] + [HSiO_3^{-}] + [H_2SiO_3] + 2 [Si_2O_5^{2-}],$$
 (2)

$$[SiO_3^{2-}] = \frac{1}{2K_3 (H^+)^2} \left[\sqrt{\frac{2CK_3 (H^+)^2 + \left(1 + \frac{(H^+)}{K_2} + \frac{(H^+)^2}{K_1 K_2}\right)^2}} - \left(1 + \frac{(H^+)^2}{K_2} + \frac{(H^+)^2}{K_1 K_2}\right) \right].$$
(3)

Подставив выражение (3) в уравпепия закона действующих масс для гидросиликатов кальция (табл. 1) с учетом стехнометрических коэффициентов и соотношения между концентрацией C и [Ca²⁺], получаем уравнения, связывающие суммарную концентрацию C (2) и равновесную концентрацию водородных нонов.

По уравнению (3) и дапным табл. 1 рассчитаны кривые растворимости ГСК в зависимости от рН раствора (рис. 1а). На кривых растворимости кружками отмечены точки, соответствующие насыщенным растворам ГСК в воде. Видно, что афвиллит образует пересыщенный раствор по отношению к Са (ОН)₂, трускотит дает пересыщенный раствор по отношению к кремпевой кислоте. Остальные ГСК (гиллебрандит, фошагит, ксонотлит,

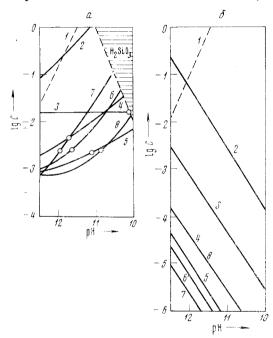


Рис. 1. Растворимость ГСК в системах ГСК — H_2O (a), ГСК — Ca (OH) $_2$ — H_2O (б) и в зависимости от рН: I — Ca (OH) $_2$; 2 — афвиллит, 3 — трускотит; 4 — ксонотлит; 5 — геролит; 6 — тоберморит; 7 — фошагит; 8 — гиллебрандит

тоберморит, гиролит) образуют насыщенные растворы с высокими значениями рН 10.7-11.7. При этом для них растворимость по кремневой кислоте равна $2.5 \cdot 10^{-3}$ мол/л, а растворимость по Ca^{2+} растет с увеличением основности ΓCK от $1.5 \cdot 10^{-3}$ до $5 \cdot 10^{-3}$ мол/л.

В реальных условиях (силикатные и цементные материалы) в равновесии в растворе с гидросиликатами кальция находится гидрат окиси кальция. В этом случае равновесие концентрации ионов [Ca²⁺] и [H⁺] связано уравнениями, денными в табл. 1, и уравнением $\lg[Ca^{2+}] = 22.9 - 2$ рН. Резульрассмотрения системы $\Gamma \text{CK} - \text{Ca}(\text{OH})_2 - \text{H}_2\text{O}$ приведены па рис. 16, откуда следует. что растворимость исследованных гидросиликатов кальция в присутствии Са(ОН), на несколько порядков меньше растворимости последнего. Характерно, что растворимость гидросиликатов кальция увеличивается с уменьшением их основности.

Кроме того, присутствие гидрата окиси кальция в водном растворе гидросиликатов кальция в исследованном диапазоне рН значительно уменьшает их растворимость.

Полученные результаты по растворимости ГСК в системах ГСК H_2O и ГСК — $Ca(OH)_2 - H_2O$ могут быть использованы при изучении поведения ГСК в процессе их образования и в условиях взаимодействия с внешней средой.

Поступило 15 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Бабушкил, Г. М. Матвеев, О. П. Мчедлов-Петросян, Термодинамика силикатов, М., 1972. ² P. S. Roller, G. Ervin, J. Am. Chem. Soc., **62**, 461 (1940).