УДК 513.82

MATEMAT**UKA**

Академик А. Д. АЛЕКСАНДРОВ

ОБ ОТОБРАЖЕНИЯХ, СОХРАНЯЮЩИХ КОНГРУЭНТНОСТЬ

1. Мы рассматриваем пространства R, R', каждое из которых может быть либо эвклидовым, либо Лобачевского, либо сферическим (можно было бы включить и пространства Римана). При этом допускаются бесконечномерные пространства. Бесконечномерное эвклидово пространство — то же, что пространство Гильберта Н с переносами; бесконечномерное пространство Лобачевского изображается в модели Клейна внутренностью шара в H; бесконечномерное сферическое пространство — сфера в H.

Теорема 1. Пусть M_0 — ограниченное множество в некотором R, содержащее по крайней мере две точки, причем, если пространство В сферическое, то $d(M_0) < 1/2 d(R)$, где $d - \partial u$ аметр. Пусть, далее, $f - \tau$ акое отображение R на некоторое R', что если $M = M_0$ (множество M конгрузитно M_0). то $f(M) = f(M_0)$, и обратно: если $N = f(M_0)$, то $f^{-1}(N) = M_0$, где $f^{-1}(N)$

полный прообраз N.

Тогда отображение f сохраняет равенство расстояний и тем самым конгруэнтность любых множеств.

Дополнение. В случае сферического R достаточно требовать $d(M_0) < d(R)$, если f непрерывно, или если M_0 состоит из двух точек, либо связно (не исключено, что это всегда достаточно).

Конгруэнтность множеств в R (и в R') можно понимать в следующем смысле. Пусть G — группа движений, «транзитивная на лучах», т. е. на множестве всех полупрямых. Мы считаем $M=M_0$ равносильным существованию такого $g \in G$, что $g(M) = M_1$.

Заметим, что теорема 1 не нова, по крайней мере в более частных предположениях, но, к сожалению, я не могу указать соответствующие работы.

2. Укажем два следствия теоремы 1, касающиеся отображений R на себя. Такое отображение, сохраняющее равенство расстояний, является подобием, если R эвклидово, и движением, если R — Лобачевского или сферическое.

Пусть G — группа движений пространства R, транзитивная на лучах, $h_{\scriptscriptstyle 0}$ — взаимно однозначное отображение R на себя и H — группа, порожденная g и h_0 . Если A, B — точки в R, то H_A обозначает совокупность всех $h \in H$ с h(A) = A, а $H_A(B)$ — множество всех X = h(B) с $h \in H_A$. Под парой A, B будем понимать пару различных точек из R.

Теорема 2. Если h_0 непрерывно и не f сохраняет равенство расстояний, то для любой пары A, B оказывается $H_A(B) = R \setminus (A)$.

В следующей теореме непрерывность h_0 не предполагается.

Tеорема 3. Если R — пространство Эвклида или Лобачевкого и для некоторой пары A, B $H_A(B)$ ограничено, то h_0 сохраняет равенство расстояний,

То же верно в сферическом R, если для некоторой пары A, B $d[H_A(B)] < d(R)$.

Интересно, не является ли требование непрерывности h_0 в теореме 2 лишним?

3. Докажем теорему 1. Пусть выполнены ее условия.

1) Отображение f взаимно однозначно.

Действительно, пусть $M = M_0$ и N = f(M). Тогда, по условию, наложенному на $f, f^{-1}(N) \equiv M_0$, и так как $f^{-1}(N) \supset M \equiv M_0$, то $f^{-1}(N) = M$, т.е. $f^{-1}(f(M)) = M.$

Допустим теперь, что в R есть такие точки X, Y, что $X \neq Y$, но f(X) = f(Y). Возьмем $M = M_0$ так, что $X \in M$, но $Y \not \in M$. Тогда $f(X) \in f(M)$ и $f^{-1}[f(M)] \supset (X, Y)$. Но $f^{-1}[f(M)] = M$, так что $M \supset (X, Y)$ вопреки выбору M. Следовательно, f взаимно однозначно.

2) f переводит шары радиуса, равного диаметру M_0 , в равные шары

радиуса, равного диаметру $f(M_0)$) и их центры — в центры.

Действительно, отнесем каждой точке $X \subseteq R$ сумму P_X всех множеств $M = M_0$, содержащих X. Точно так же образуем сумму $Q_{f(X)}$ всех множеств $N = f(M_0)$, содержащих f(X). Из условий, наложенных на f, следует, что $f(P_X) = Q_{f(X)}$.

Очевидно, вращения вокруг X переводят P_x в себя, так что P_x состоит из сфер с центром X. Поэтому дополнение суммы всех P_x , не пересекающихся с P_x , будет шаром S_x с центром X и радиусом, равным дламетру M_0 .

Совершенно так же в R' строятся шары $S_{X'}$ и оказывается $S_{f(X)} = f(S_X)$

3) Поверхность ∂S_x шара S_x отображается на поверхность $\partial S_{f(x)}$ шара $S_{f(x)}$:

Это следует из того, что ∂S_X состоит из таких точек $Y \subseteq S_X$, что имеется шар S_Z с $S_Z \cap S_X = (Y)$.

4) Отображение f гомеоморфно.

Действительно, из 3) следует, что внутренности шаров S_X отображаются на внутренности шаров $S_{f(X)}$. Пересечением внутренностей двух шаров можно получить сколь угодно малую окрестность данной точки. Поэтому f, а также f^{-1} непрерывно.

4. Итак, мы имеем гомеоморфизм f R на R', переводящий равные шары S_x в равные шары $S_{f(X)}$ и их центры — в центры. Покажем, что f сохраняет равенство расстояний. (При этом в сферическом пространстве ра-

диус шаров S_x меньше половины его диаметра.)

Возьмем $Y \in S_X$ и такой шар S_Z , что ∂S_Z проходит через Y и касается сферы $\partial S_X \cap \partial S_Y$. Проведя это построение для всех $Y \in S_X$, образуем сумму всех соответствующих пересечений $S_X \cap S_Z$. Ее дополнение в S_X будет открытым шаром с центром X. Соответствующий замкнутый шар обозначим S_X .

Это построение осуществляем для всех точек $X \in R$ и по полученным шарам S^1 строим шары S^2 так же, как S^1 строятся по исходным S. Продолжая этот процесс, будем получать сколь угодно малые шары S^n .

То же построение проделываем в R', отправляясь от шаров $S^i = f(S)$,

и получаем равные шары S^{in} , причем $S^{in}_{f(X)} = f(S_{X}^{n})$.

Фиксируем $\varepsilon > 0$, и пусть шар $\mathfrak{S}_x = S_{x^n}$ имеет радиус $r < \varepsilon$. Беря сумму шаров \mathfrak{S}_r с $Y \in \mathfrak{S}_x$, получаем шар \mathfrak{S}_x^{-1} радиуса 2r; аналогично получаем шар \mathfrak{S}_x^{-2} радиуса 3r и т.д. Аналогичное построение осуществляем, исходя от шара $\mathfrak{S}_{f(X)}^{-1} = f(S_{x^n})$, и получаем шары $\mathfrak{S}_{f(X)}^{-1} = f(\mathfrak{S}_x^{-m})$. При этом $\mathfrak{S}_{f(X)}^{m} = f(\mathfrak{S}_x^{-m})$.

Таким образом, точки Y, равно удаленные от X на расстояние, кратное r, переходят в точки f(Y), равно удаленные от f(X) на расстояния, крат-

ные r^1 — радиусу шара $f(\mathfrak{S}_x)$.

Так как r произвольно мало и f непрерывно, то оказывается, что точки, равно удаленные от X, переходят в равно удаленные от f(X). И так как это верно для любой точки X, то вообще f сохраняет равенство расстояний, что и требовалось доказать.

5. Докажем теорему 3. Пусть выполнены ее условия. Сопоставим каждой точке X множество P_X всех Y=h(B) при h(A)=X, где $h\in H$, так что, в частности, $P_A=H_A(B)$. Очевидно, при всех h и X будет $h(P_X)=P_{h(X)}$. Кроме того, так как H содержит транзитивную группу движений, то все P_X конгруэнтны друг другу.

Таким образом, для каждого отображения f=h оказываются выполненными условия теоремы 1, и, ссылаясь на нее, заключаем, что h — движение h могло бы быть подобием, отличным от движения, но (в эвклидовом Rтак как $H_A(B)$ ограничено, то это исключено).

6. Докажем теорему 2. Пусть выполнены ее условия. Пусть R является

пространством Эвклида или Лобачевского.

Если множество $P_A = H_A(B)$ ограничено, то по теореме 3 h_0 — движение. Допустим, что P_A не ограпичено, но $P_A \neq R \setminus (A)$.

Как и выше, каждой точке X соответствует множество P_X , конгруэнтное

 P_A , причем при всяком $h \in H$, $h(P_X) = P_{h(X)}$.

Пусть Q_A — какая-либо связная компонента множества $R \setminus P_A$, причем $Q_A \neq (A)$. Так как $P_A \neq R \setminus (A)$, то такая компонента существует. Группа H_A содержит группу вращений вокруг A, трапзитивную на лучах, исходящих из A; поэтому Q_A переводится в себя такими вращениями и, следовательно, состоит из сфер с центром A. Отсюда следует, что Q_A ограничена, так как иначе P_A было бы ограпичено вопреки предположению.

Каждой точке X соответствует множество Q_X — связная компонента $R \setminus P_{x}$, конгруэнтная Q_{A} . Отображения $h \in H$ биективны и непрерывны, так что при любых данных h и X множество $h(Q_x)$ будет связной компо-

нентой множества $R \setminus P_{h(X)}$.

Из непрерывности отображений легко заключить далее, что при всяком

данном h все $h(Q_x)$ оказываются конгруэнтными друг другу.

Таким образом, всякое h переводит конгрузитные множества Q_x в конгруэнтные. Отсюда, ссылаясь на теорему 1, заключаем, что h сохраняет равенство расстояний, чем теорема 2 доказана в случае, когда R — пространство Эвклида или Лобачевского.

В случае сферического R доказательство апалогично, хотя и требует некоторых дополнительных соображений, которые мы, однако, опускаем.

7. Теорема 1 допускает обобщение, когда отображение определено не на всем R.

Теорема 4. Пусть D — область в R, M_0 — множество в D диаметра d,

 $0 < d < \infty, K_0$ — шар в D радиуса r > 4d, O — его центр. Пусть f — такое отображение D в R', что: 1) f(D) содержит шар c **цент**ром f(O), радиуса r' > 4d', где $d' - \partial$ иаметр $f(M_0)$; 2) выполнено условие теоремы 1, т.е. если $M = M_0$ и $M \subseteq D$, то $f(M) = f(M_0)$, и если $N = f(M_0)$ $u \ N \subset f(D)$, to $f^{-1}(N) = M_0$.

Tогда f сохраняет равенство расстояний во всяком таком шаре K, что

 $K_0 \subset K \subset D$.

Доказательство. Пусть K — шар радиуса d с центром O. Так же как в п. 3, доказываем, что f гомеоморфно на K и переводит шары S_X радиуса d с центрами $X \subseteq K$ в шары $S_{f(X)}$ радиуса d' (так что, в частности, $K = S_0$ и f(K) — шар с центром f(O)).

Пересекая сферу ∂K шарами S_X с $X \in \partial K$, получаем на ней систему равных шаров \mathfrak{S}_X . При этом f отображает ∂K на сферу $\partial f(K)$ и шары \mathfrak{S}_X —

на равные шары $f(\mathfrak{S}_X)$ с центрами f(X).

Если dim $\partial K \ge 2$, то ∂K — сферическое пространство и вывод п. 4 приводит к тому, что f, отображая ∂K на $\partial f(K)$, сохраняет равенство расстоя-

пий. Доказательство того же при $\dim \partial K = 1$ мы опускаем.

Теперь можно распространить тот же вывод на поверхности других шаров с центром O. Так, например, пересечение всех шаров S_x с $X \subseteq K$, пересекающих ∂K по равным шарам, представляет собою шар с центром O, и подобно предыдущему, доказывается, что f отображает его поверхность с сохранением равенства расстояний. Отсюда это свойство устанавливается на всем К. Вне К оно устанавливается из аналогичного рассмотрения сумм шаров S_X , пересекающих ∂K по равным шарам. Далее, когда сохранение равенства расстояний установлено на каком-то шаре $K' \supset K$, мы можем поступить так же. Таким путем приходим к доказательству теоремы 4.

8. В теореме 4 диаметр d множества M_0 и радиус r шара K_0 связаны неравенством r > 4d. Множитель 4 можно уменьшить, но нижний предел в общем случае нам не известен. Однако при частных предположениях

можно получить точную оценку. Так, например, имеет место

Теорема 5. Пусть в условиях теоремы 4 снято неравенство r > 4d, но предполагается, что M_0 и $f(M_0)$ — шары и f взаимно однозначно. Тогда f сохраняет равенство расстояний на всяком шаре $K \subset D$ радиуса $r \geqslant d$. Вместе с тем если D есть шар радиуса r < d, то существуют взаимно однозначные отображения шара D на себя, переводящие шары $M \subset D$ диаметра d в такие же шары, но не сохраняющие расстояний.

Доказательство. Пусть выполнены условия первой части теоремы. Можно считать, что центр шара M_0 находится в центре шара K. Шары,

равные M_0 и содержащиеся в K, будем обозначать M.

Для каждых двух точек $Z, Y \subseteq M_0$ найдется содержащий их шар $M \neq M_0$, кроме того случая, когда X, Y — диаметрально противоположные на сфере ∂M_0 . Отсюда следует, что отображение f переводит ∂M_0 в $\partial f(M_0)$ и

диаметральные противоположные точки в такие же.

Образуем такую последовательность шаров $M_i \neq M_0$, что $M_i \cap \partial M_0 \subset M_{i+1} \cap \partial M_0$, и пусть $P = \bigcup M_i \cap \partial M_0$. Множество P не будет содержаться ни в каком $M \neq M_0$ только тогда, когда оно полусфера (открытая). Отсюда следует, что f, отображая ∂M_0 на $\partial f(M_0)$, переводит полусферы в полусферы. Кроме того, f переводит содержащиеся в ∂M_0 шары (круги) $M \cap \partial M_0$ в шары. Из обоих этих свойств следует, что f отображает ∂M_0 на $\partial f(M_0)$ с сохранением равенства расстояний.

Отсюда следует, так же как в п. 5, что f сохраняет равенство расстояний

на шаре K, что и требовалось доказать.

Пусть теперь D — шар радиуса r < d. Пусть P — пересечение всех шаров $M = M_0$, $M \subset D$. Определяем f как отображение D на себя, тождественное на $D \setminus P$ и произвольное взаимно однозначное на P, так что оно не сохраняет расстояний, и второе утверждение теоремы 5 доказано.

9. Укажем без доказательства еще одну теорему.

Теорем а 6. Пусть K — шар в R радиуса r и f — взаимно однозначное отображение K в R', при котором каждый шар $M \subseteq K$ некоторого данного диаметра $d \le r$ отображается на шар так, что центр переходит в центр (но равенство шаров f(M) не требуется).

Тогда f сохраняет равенство расстояний.

Поступило 10 IV 1973