УДК 519.46

MATEMATUKA

С. А. ЛИБЕР

ОБ ОДНОЙ ПРОБЛЕМЕ А. И. МАЛЬЦЕВА

(Представлено академиком П. С. Александровым 12 XII 1972)

Цель этой заметки — указать необходимые и достаточные условия для положительного ответа на два вопроса в теории топологических алгебр, которые поставил А. И. Мальцев (1) пятнадцать лет тому назад. Возникающая при этом возможность конструировать топологические алгебры с заданными свойствами позволяет, например, обобщить на случай произвольного невырожденного многообразия алгебр теорему А. А. Маркова (2) о существовании связных топологических групп экспоненты 2 любой мощности, начиная с 2^{\aleph_0} . Соответствующий результат М. И. Граева (3) для топологических групп экспоненты n здесь также содержится как частный случай. В теории топологических алгебр эти результаты находят свое самое естественное место.

Будем придерживаться терминологии (¹) за одним псключением: никаких ограничений на мощность множества Ω основных операций рассматриваемых топологических алгебр не накладывается.

K проблеме описания топологической алгебры A, заданной в многообразии $\mathfrak M$ порождающим пространством X и совокупностью соотношений Σ

$$f_{\lambda}(x_{\lambda_1},\ldots,x_{\lambda_{n_{\lambda}}})=g_{\lambda}(x_{\lambda_1},\ldots,x_{\lambda_{n_{\lambda}}}), \quad x_{\lambda_i}\in X,$$

где f_{λ} , g_{λ} — многочлены, А. И. Мальцев относил следующие вопросы:

А) Изоморфна ли алгебра A абстрактной алгебре A', заданной в многообразии $\mathfrak M$ теми же определяющими соотношениями Σ и порождающим множеством X, что и сама алгебра A?

Б) Содержит ли алгебра A пространство X топологически, т. е. является ли каноническое непрерывное отображение σX в A гомеоморфным вложением?

Достаточные условия для положительного ответа на оба вопроса (X) вполне регулярно, $\Sigma = \phi$), которые в случае многообразия групп превращаются в теоремы А. А. Маркова (4), были установлены Сверчковским (5). Приводимые необходимые и достаточные условия являются новыми и для топологических групп.

Необходимые условия для положительного ответа на эти вопросы получаются при рассмотрении многообразия групп. Поскольку каждая топологическая группа вполне регулярна, то не вполне регулярное пространство не может в ней содержаться, и возникает очевидное первое требование, чтобы X было вполне регулярным. Обозначим через Y подмножество X тех элементов, на которые наложены соотношения Σ , т. е. действительно участвующих в (¹). Предположим, что Y имеет хоть одну предельную точку $y_0 \subseteq Y$, и рассмотрим топологическую группу G (абстрактную группу G'), заданную пространством (множеством) X и соотношениями $y_0^2 = 1$, y = 1, $y \in Y \setminus \{y_0\}$. В группе G все множество Y по непрерывности отождествляется с 1, в то время как в G' этого не происходит. Группа G' содержит элемент порядка 2 и алгебраически не изоморфна группе G, которая является свободной топологической группой в смысле Граева (³), а значит, не содержит элементов конечного порядка.

Будем говорить, что подмножество У пространства X имеет дискретное в X семейство окрестностей своих

то чек, если каждому $y \in Y$ можно сопоставить его окрестность V_y так, что у всякой точки $x \in X$ есть окрестность, пересекающаяся самое большее с одним элементом семейства $\{V_y; y \in Y\}$. Можно доказать, что подмножество Y вполне регулярного пространства X имеет дискретное в X семейство окрестностей своих точек тогда и только тогда, когда существует такое метрическое пространство M и непрерывное отображение fX в M, что при любых $y_1 \neq y_2$ из $Y = \rho(f(y_1), f(y_2)) \ge 1$.

Второе необходимое условие: подмножество Y тех элементов X, на которые наложены соотношения Σ , обладает дискретным в X семейством окрестностей своих точек.

В самом деле, в силу сказанного можно сразу считать, что X вполне регулярно, а Y дискретно в индуцированной топологии. Пусть H— произвольная группа той же мощности, что и Y. Фиксируем взаимно однозначное соответствие α : $H \to Y$ и перенесем с его помощью все соотношения из H на Y, т. е. получаемая совокупность Σ состоит из всех соотношений $h_1^{\alpha}, \ldots, h_n^{\alpha} = 1^{\alpha}$, где $h_i \in H$ и $h_1, \ldots, h_n = 1$. Если ответ на вопрос E) положительный, то группа E0, определяемая пространством E1 и соотношениями E2, содержит E3. Множество E4 дискретно в топологии, индуцируемой из E6, т. е. E7 — дискретная

подгруппа G.

Пусть V — такая симметричная открытая окрестность 1, что $V^4 \cap Y = \{1\}$. Покажем, что $\{yV; y \in Y\}$ является дискретным в G семейством окрестностей точек Y. Если $y_1V^2 \cap y_2V_2 = \phi$, где $y_i \in Y$, то $y_1^{-1}y_2 \in V^4 \cap Y = \{1\}$ и $y_1 = y_2$, т. е. это семейство непересекающееся. Пусть $x \in G$. Если x содержится в некотором zV^2 , $z \in Y$, то в качестве окрестности x, пересекающейся лишь с одним множеством из $\{yV\}$, берем zV^2 . Если же $x \not\equiv \bigcup yV^2$, $y \in Y$, то окрестность xV точки x не пересекается ни с одним множеством из $\{yV\}$, что и требовалось. Отсюда $\{yV \cap X; y \in Y\}$ — дискретное в X семейство окрестностей точек Y. Необходимость второго условия доказана.

Обозначим через σ' каноническое отображение множества X в абстракт-

ную алгебру А' и докажем достаточность этих условий.

Теорема 1. Пусть X — вполне регулярное пространство, а соотношения Σ наложены на элементы такого подпространства $Y \subseteq X$, которое имеет

дискретное в Х семейство окрестностей своих точек. Тогда

- 1) Топологическая алгебра A, определяемая в произвольном многообразии $\mathfrak M$ пространством X и соотношениями Σ , изоморфна над X абстрактной алгебре A', определяемой в $\mathfrak M$ множеством X и теми же соотношениями Σ .
 - 2) Каноническое отображение о замкнуто.

3) Образ Х при отображении о замкнут в А.

4) Каноническое отображение в является гомеоморфным вложением тогда и только тогда, когда вложением является в'.

Основным моментом доказательства является следующая

X, $Y \subseteq X$ и каждое тождественное на Y отображение X в себя распространяется до эндоморфизма X. Пусть на X задана вполне регулярная топология так, что Y имеет дискретное в X семейство окрестностей своих точек.

Тогда на В может быть введена (хаусдорфова) топология, превышающая В в топологическую алгебру и такая, что X гамкнуто в В, а индуцируемая на X топология совпадает с первоначальной.

Следствие. Пусть X вполне регулярное пространство, а Σ – конеч-

ная совокупность соотношений. Тогда имеют место 1)-4).

Свободная в смысле Граева гопологическая группа определяется вполне регулярным пространством и одним соотношением $x_0 = 1$.

Отсюда следуют некоторые теоремы М. И. Граева (3) о свойствах этой

группы.

Теорема 2 (ср. (1), стр. 194). Каждая абстрактная алгебра A произ-

вольного многообразия \mathfrak{M} изоморфно вкладывается в линейно связную топологическую алгебру L этого многообразия. Топологическая алгебра Lможет быть выбрана так, что

$$|L| \leqslant \max(|A|, |\Omega|, 2^{\aleph_0}). \tag{2}$$

Показательство. Множество А вложим в метрическое пространство M следующим образом. Сопоставим каждому $a \in A$ пространство I_a , изометричное отрезку [0, 1] и в $\cup I_a$, $a \in A$, отождествим все левые концы отрезков I_a между собой, а правые — с соответствующими элементами из A. Метрика о на полученном пространстве М определяется требованиями, чтобы на всяком $I_{\mathfrak{a}}$ \mathfrak{o} совпадала с естественной метрикой этого отрезка. а для любых $a_1 \neq a_2$ из A было $\rho(a_1, a_2) = 2$. Обозначим через Σ совокупность всех соотношений, выполняющихся в алгебре A относительно ее элементов, и рассмотрим топологическую алгебру L, определяемую в многообразии $\mathfrak M$ пространством M и соотношениями Σ . Поскольку M — вполне регулярное пространство, а ε -окрестности точек A при $0<\varepsilon<1$ образуют дискретное семейство, то по теореме 1 алгебра L изоморфна абстрактной алгебре L', определяемой в $\mathfrak M$ множеством M и теми же соотношениями Σ . Так как L' задана множеством и соотношениями алгебры A и еще некоторым множеством, свободным от соотношений, то А изоморфно вкладывается в L' с помощью канонического отображения σ' ((6), стр. 282).

Ясно, что $|L| \leq \max(|A|, |\Omega|, 2^{\aleph_0})$. Остается доказать, что L линейно связна. С этой целью рассмотрим на L конгруенцию ε , классы которой суть компоненты линейной связности топологической алгебры L и, естественный гомоморфизм $\varphi\colon L \to L/\varepsilon$ (в L/ε никакой топологии не вводим). Так как L алгебраически порождается своим линейно связным подпространством M^σ , то L/ε порождается одним элементом x, который является образом M^σ при гомоморфизме φ . В то же время подалгебра A алгебры L содержится в M^σ , отсюда $\{x\}$ — подалгебра алгебры L/ε , и, значит, L/ε

состоит из одного элемента. Теорема доказана.

Теорема 3. Среди топологических алгебр произвольного невырожденного многообразия **M** существуют линейно связные алгебры произ-

вольной мощности, начиная $c |\Omega| + 2^{\aleph_0}$.

Доказательство. Пусть $\gamma \geqslant |\Omega| + 2^{\aleph_0}$. В многообразии \mathfrak{M} существует такая абстрактная алгебра A, что $|A| = \gamma$. По теореме 2 A вкладывается в линейно связную топологическую алгебру L из \mathfrak{M} с условием (2), которое принимает вид $|L| \leqslant |A|$, так как $|A| \geqslant |\Omega| + 2^{\aleph_0}$. Следовательно, $|L| = |A| = \gamma$.

Саратовский государственный университет им. Н. Г. Чернышевского

Поступило 1 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. И. Мальцев, Изв. АН СССР, сер. матем., 21, 171 (1957). ² А. А. Марков, там же, 8, 225 (1944). ³ М. И. Граев, там же, 12, 279 (1948). ⁴ А. А. Марков, там же, 9, 3 (1945). ⁵ S. Swierczkowski, Proc. London Math. Soc., 14, № 55, 566 (1964). ⁶ А. И. Мальцев, Алгебраические системы, М., 1970.