УДК 517.924

MATEMATUKA

в. к. мельников

О СУЩЕСТВОВАНИИ ДВОЯКОАСИМПТОТИЧЕСКИХ ТРАЕКТОРИЙ

(Представлено академиком П. С. Александровым 15 XII 1972)

Пусть G — область на плоскости (x,y), ограниченная аналитической кривой C, гомеоморфной окружности. Пусть, далее, T — сохраняющий площадь аналитический гомеоморфизм области G в плоскость (x,y). Предположим, что существует сохраняющий площадь аналитический гомеоморфизм T^{-1} области G в плоскость (x,y) такой, что $TT^{-1}(\xi) = \xi$ для любой точки $\xi \equiv (T(G) \cap G)$. Пусть, наконец, s — неподвижная точка отображения T, а Λ_s — асимптотическая кривая, выходящая из точки s, т. е. Λ_s — гомеоморфная интервалу аналитическая кривая такая, что

$$\overline{\Lambda}_s \subset G, \quad \Lambda_s = \bigcup_{n=-\infty}^{\infty} T^n (\lambda_{\alpha}), \quad \rho (s, T^{-n}(\lambda_{\alpha})) \to 0 \quad \text{при} \quad n \to \infty,$$
 (1)

где λ_{α} — замкнутая дуга кривой Λ_s , ограниченная парой точек $\alpha \in \Lambda_s$ и $T(\alpha)$. Определим множество $\widetilde{\Lambda}_s$, полагая, что точка $\zeta \in \widetilde{\Lambda}_s$, если существует последовательность точек $\zeta_m \in T^{n_m}(\lambda_{\alpha})$ такая, что $\zeta_m \to \zeta$, а $n_m \to \infty$ при $m \to \infty$.

Тогда справедлива следующая

T е о р е м а 1. Eсли $\Lambda_s \cap \widetilde{\Lambda}_s = 0$, то любая точка $z \in \widetilde{\Lambda}_s$ является неподвижной, τ . е. T(z) = z.

Доказательство этой теоремы опирается на следующие леммы, в формулировках которых опущено обязательное требование $\Lambda_s \cap \widetilde{\Lambda}_s = 0$.

 Π емма 1. Пусть ломаная $\mathscr{L} \subseteq G$ соединяет точки $\alpha \subseteq \Lambda_s$ и $\bar{\alpha} \subseteq \widetilde{\Lambda}_s$. Предположим, что

$$\mathscr{L} \cap \widetilde{\Lambda}_s = \overline{a}, \qquad T(\mathscr{L} \setminus \overline{a}) \cap (\mathscr{L} \setminus \overline{a}) = 0.$$
 (2)

Предположим, далее, что $\mathcal{L} \cap \Lambda_s = \alpha$. Тогда найдется $m \neq 0$ такое, что

$$T^{m}(\bigcup_{k=\ \mathrm{sign}\ m}^{m}T^{-k}(\mathcal{L}))\subset G, \quad T^{m}(\mathcal{L}\setminus\widetilde{\alpha})\cap(\mathcal{L}\setminus\widetilde{\alpha})\neq0.$$

 Π е м м а 2. Пусть ломаная $\mathscr{L} \subset G$, соединяющая точки $\alpha \in \Lambda_s$ и $\bar{\alpha} \in \Lambda_s$, удовлетворяет условиям (2). Предположим, что

$$\mathcal{L} \cap (\Lambda_s \setminus R_a) = 0, \quad \epsilon \partial e \ R_a = \bigcup_{k=0}^{\infty} T^k (\lambda_a).$$
 (3)

Tог $\partial a \mathscr{L} \cap \lambda_{\sigma} \neq 0$ ∂ ля любой точки $\sigma \in R_{\alpha}$.

 Π емма 3. Пусть ломаная $\mathcal{L} \subset G$, соединяющая точки $\alpha \in \Lambda_s$ и $\bar{\alpha} \in \bar{\Lambda}_s$, удовлетворяет условиям (2), (3). Пусть, далее, $a, b \in (\mathcal{L} \cap \Lambda_s)$ — произвольные точки, L — замкнутая дуга кривой Λ_s , ограниченная точками a, b, u l — часть ломаной \mathcal{L} , заключенная между этими же точками.

Тогда индекс $J(\eta, K)$ произвольной точки $\eta \in (s \cup \widetilde{\Lambda}_s)$ относительно замкнутой кривой $K = L \cup l$ равен нулю.

Лемма 4. Пусть ломаная $\mathscr{L} \subset G$, соединяющая точки $\alpha \in \Lambda_s$ и $\bar{\alpha} \in \tilde{\Lambda}_s$, удовлетворяет условиям (2), (3). Пусть, далее, $L_m - \partial$ уги множества $\Lambda_s \setminus (\mathscr{L} \cup T(\mathscr{L}))$, один конец которых принадлежит ломаной \mathscr{L} , а дру-

 $roй-кривой\ T(\mathcal{L})$. Выберем на ломаной $\mathcal L$ и кривой $T(\mathcal L)$ согласованным образом направление нормали.

Тогда все дуги L_m подходят к ломаной $\mathscr L$ с одной и той же стороны и почти все дуги L_m подходят к кривой $T(\mathscr L)$ с противоположной стороны.

В соответствии с леммой 4 направление, в котором дуги L_m подходят к ломаной \mathcal{L} , будем считать положительным. Следовательно, направление, в котором почти все дуги L_m подходят к кривой $T(\mathcal{L})$, будет отридательным.

Пемма 5. Пусть ломаная $\mathcal{L} \subset G$, соединяющая точки $\alpha \in \Lambda_s$ и $\bar{\alpha} \in \bar{\Lambda}_s$, удовлетворяет условиям (2), (3). Пусть, далее, точки $a, a' \in (\mathcal{L} \cap \Lambda_s)$ и $b, b' \in (T(\mathcal{L}) \cap \Lambda_s)$ лежат на кривой Λ_s в следующем порядке: $T^{-1}(\alpha)$, a, b, b', a'; причем на ломаной \mathcal{L} точка а лежит между точками a' и α , a на кривой $T(\mathcal{L})$ точка b лежит между точками b' и $T(\alpha)$. Пусть, наконец, l — часть ломаной \mathcal{L} , заключенная между точками a и a', a l' — часть кривой $T(\mathcal{L})$, заключенная между точками b и b'.

Предположим, что замкнутые дуги L и L' кривой Λ_s , заключенные соответственно между точками a, b и a', b', удовлетворяют условиям: $L \cap \mathcal{L}' = a$, $L' \cap \mathcal{L}' = a'$, $L \cap \mathcal{L}'' = b$, $L' \cap \mathcal{L}'' = b'$, где $\mathcal{L}' -$ часть ломаной \mathcal{L} , заключенная между точками \bar{a} и a, a $\mathcal{L}'' -$ часть кривой $T(\mathcal{L})$, заключенная между точками $T(\bar{a})$ и b. Предположим, далее, что $\mathcal{L}' \cap (\Lambda_s \setminus R_g) =$

 $=\mathcal{L}''\cap(\Lambda_s\setminus R_a)=0.$

Тогда область g, ограниченная кривой $K=l\cup L\cup l'\cup L'$, касается ломаной $\mathcal L$ с положительной стороны, а кривой $T(\mathcal L)-c$ отрицательной стороны.

Пемма 6. Пусть ломаная $\mathcal{L} \subset G$, соединяющая точки $\alpha \in \Lambda_s$ и $\bar{\alpha} \in \bar{\Lambda}_s$, удовлетворяет условиям (2), (3). Пусть, далее, точки a, $a' \in (\mathcal{L} \cap \Lambda_s)$ и b, $b' \in (T(\mathcal{L}) \cap \Lambda_s)$ лежат на кривой Λ_s в следующем порядке: $T^{-1}(\alpha)$, a, b, b', a'; причем на ломаной \mathcal{L} точка а лежит между точками a' и α , a на кривой $T(\mathcal{L})$ точка b лежит между точками b' и $T(\alpha)$. Пусть, наконец, L, L' и L'' — замкнутые дуги кривой Λ_s , ограниченные соответственно па-

рами точек (a, b), (a', b') и (b, b').

Предположим, что выполнены условия $l \cap (\Lambda_s \setminus R_b) = a$, $l \cap R_b = a'$, $l' \cap \Lambda_s = b \cup b'$, где l— часть ломаной \mathcal{L} , заключенная между точками a u a', l'— часть кривой $T(\mathcal{L})$, заключенная между точками b u b'. Предположим, далее, что область f, ограниченная кривой $K' = L'' \cup l'$, касается кривой $T(\mathcal{L})$ с положительной стороны, а область g, ограниченная кривой $K = l \cup L \cup l' \cup L'$, касается кривой $T(\mathcal{L})$ с отрицательной стороны u ломаной \mathcal{L} — с положительной стороны.

Тогда справедливы равенства $L'' \cap l = 0$, $f \cap g = 0$.

 $\mathcal{L} \subset G$, соединяющая точки $\alpha \in \Lambda_s$ и $\overline{\alpha} \in \overline{\Lambda}_s$, удовлетворяет условиям (2), (3). Пусть, далее, точки $a, b \in (\mathcal{L} \cap \Lambda_s)$ лежат на кривой Λ_s в следующем порядке: $T^{-1}(\alpha)$, a, b; причем на ломаной \mathcal{L} точка а лежит между точками α и b. Пусть, наконец, L—замкнутая дуга кривой Λ_s , ограниченная точками a и b, l—часть ломаной \mathcal{L} , заключенная между этими же точками.

Предположим, что $l \cap \Lambda_s = a \cup b$, $\mathscr{L}' \cap (\Lambda_s \setminus R_a) = 0$, где $\mathscr{L}' - \text{часть}$ ломаной \mathscr{L} , заключенная между точками \mathfrak{A} и a. Предположим, далее, что область f, ограниченная кривой $K = L \cup l$, касается ломаной \mathscr{L} с положи-

тельной стороны.

Возьмем теперь точку $a^* \in (\mathcal{L}' \cap \lambda_a)$ так, что выполнено условие: $\mathcal{L}^* \cap (\Lambda_* \setminus T(R_a)) = a^*$, где $\mathcal{L}^* -$ часть ломаной \mathcal{L}' , заключенная между точками $\bar{\alpha}$ и a^* . Возьмем, далее, точку $b^* \in (T(R_b) \cap \mathcal{L}^*)$ так, что выполнено условие: $l^* \cap T(R_b) = b^*$, где $l^* -$ часть ломаной \mathcal{L}^* , заключенная между точками a^* и b^* . Возьмем, наконец, замкнутую дугу L^* кривой Λ_* , ограниченную точками a^* и b^* .

Тогда $L^* \cap l^* = a^* \cup b^*$ и кривая $K^* = L^* \cup l^*$ ограничивает область f^* такую, что $f \cap f^* = 0$ и $T(f) \subset f^*$. При этом область f^* касается ломаной $\mathcal L$ с

положительной стороны.

Таким образом, для любой точки $z \in \Lambda_s$ такой, что $T(z) \neq z$, на основании лемм 1-7 нашлась бы область $f_0 \subset G$, удовлетворяющая при любом k > 0 условиям $T^k(f_0) \subset G$, $T^k(f_0) \cap f_0 = 0$, что невозможно. Это замечание завершает доказательство теоремы 1.

С другой стороны, если аналитическое сохраняющее площадь отображение T вида $x'=x+f(x,\ y),\ y'=y+g(x,\ y)$ отлично от тождествен-

ного, то справедлива следующая теорема.

Теорема 2. Пусть на плоскости (x, y) дан континуум K такой, что сохраняющее площадь отображение T аналитично в каждой точке $z \in K$ и для любой точки $z \in K$ справедливо равенство T(z) = z.

Тогда существует точка $z_0 = (x_0, y_0) \equiv K$ и аналитическая в окрестности этой точки замена переменных $(x, y) \rightarrow (u, v)$ такая, что в новых переменных отображение T имеет вид

$$u' = u + cv^{n} + \alpha(u, v)v^{n}, \quad v' = v + \beta(u, v)v^{n},$$

где постоянная $c \neq 0$, целое число n > 0 и $\alpha(0, 0) = \beta(0, 0) = 0$. При этом якобиан этой замены переменных равен тождественно единице, а точке \mathbf{z}_0 в новых переменных соответствует точка u = v = 0.

С помощью теоремы 2 теорема 1 может быть усилена следующим об-

разом.

T е о р е м а 3. Eсли $\Lambda_s \cap \widetilde{\Lambda}_s = 0$, то множество $\widetilde{\Lambda}_s$ состоит из единственной и притом неподвижной точки отображения T.

Теорема 3 полностью характеризует случай $\Lambda_s \cap \Lambda_s = 0$. В том случае, когда $\Lambda_s \cap \widetilde{\Lambda}_s \neq 0$, важно следующее понятие. Пусть точка $\zeta \in \Lambda_s$. Пусть, далее $S_{\mathfrak{t}} -$ замкнутая дуга кривой Λ_s , ограниченная точками $T(\zeta)$ и $T^{-1}(\zeta)$. Возьмем $\varepsilon' > 0$ настолько малое, что ε' -окрестность $U_{\varepsilon'}(\zeta)$ точки ζ удовлетворяет условиям

$$U_{\varepsilon'}(\zeta) \subset G, \quad U_{\varepsilon'}(\zeta) \cap (\Lambda_s \setminus T^{-1}(R_{\zeta})) = 0, \quad U_{\varepsilon'}(\zeta) \setminus S_{\zeta} = U'_{\zeta} \cup U''_{\zeta}, \quad (4)$$

где U_{ξ}' и U_{ξ}'' — связные множества. Определим теперь множества $P_s' \subseteq \Lambda_s$ и $P_s'' \subseteq \Lambda_s$ следующим образом. Точка $\xi \in \Lambda_s$ принадлежит множеству P_s' , если существует последовательность точек $\xi_m \in (T^{n_m}(S_\xi) \cap U_\xi')$ такая, что $\xi_m \to \xi$, а $n_m \to \infty$ при $m \to \infty$. Множество P_s'' определяется аналогично с помощью области U_ξ'' .

В рассматриваемой нами ситуации справедлива следующая

Теорема 4. Если $\Lambda_s \cap \widetilde{\Lambda}_s \neq 0$, то $P_s' = P_s'' = \Lambda_s$.

Предположим теперь, что кроме асимптотической кривой Λ_s , выходящей из точки s, имеется асимптотическая кривая Λ_s^* , входящая в точку s, т. е. предположим, что гомеоморфная интервалу аналитическая кривая Λ_s^* вместе с точкой s удовлетворяют условиям (1), если в них всюду заменить T на T^{-1} . Возьмем далее некоторую точку $\xi \in \Lambda_s$ и фиксированное $\varepsilon' > 0$ настолько малое, что ε' -окрестность $U_{\varepsilon'}(\xi)$ точки ξ удовлетворяет условиям (4). Возьмем, наконец, какую-нибудь точку $\xi^* \in \Lambda_s^*$ и пусть $\lambda_{\xi^*}^*$ — замкнутая дуга кривой Λ_s^* , ограниченная точками ξ^* и $T^{-1}(\xi^*)$. Кривую Λ_s^* будем называть соседней кривой первого рода по отношению к кривой Λ_s , если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любой точки $z \in U_{\varepsilon'}$, удовлетворяющей условию $\rho(z,\xi) < \delta$, справедливо неравенство $\rho(T^{-n}(z),\lambda_{\xi^*}^*) < \varepsilon$ при некотором n > 0. Соседняя кривая второго рода определяется аналогично с помощью области $U_{\xi''}$.

В этой ситуации справедлива следующая

T е о р е м а 5. Eсли $\Lambda_s \cap \bar{\Lambda}_s \neq 0$, а Λ_s * — cосе θ няя кривая по отношению κ кривой Λ_s , то $\bar{\Lambda}_s \cap \Lambda_s$ * $\neq 0$.

Определим теперь множество $\widetilde{\Lambda}_s^*$ аналогично множеству $\widetilde{\Lambda}_s$. С помощью теорем 4, 5 доказывается следующая важная

Теорема 6. Если Λ_*^* — соседняя кривая по отношению к кривой Λ_* , а $\Lambda_* \cap \tilde{\Lambda}_* \neq 0$ и $\Lambda_*^* \cap \tilde{\Lambda}_*^* \neq 0$, то $\Lambda_* \cap \Lambda_*^* \neq 0$.

Предположим теперь, что $s \in G$ — неподвижная точка гиперболического типа. Предположим далее, что инвариантные кривые Λ_- и Λ_+ , проходящие через точку s, удовлетворяют условию $(\Lambda_- \cup \Lambda_+) \subset G$. Полагая $\Lambda_- \setminus s = \Lambda_1 \cup \Lambda_2$, $\Lambda_+ \setminus s = \Lambda_1^* \cup \Lambda_2^*$, мы получим две асимптотические кривые Λ_1 и Λ_2 , выходящие из точки s, и две асимптотические кривые Λ_1^* и Λ_2^* , входящие в точку s. Из теоремы Мозера (1) следует, что кривая Λ_i^* будет соседней по отношению к кривой Λ_j , i, j = 1, i Значит, в этой ситуации применима теорема i С ее помощью доказывается следующая

Неподвижную точку $s \in G$ отображения T назовем отмеченной, если существует хотя бы одна гомеоморфная полуинтервалу аналитическая кривая $\Lambda' \subset G$, удовлетворяющая одному из следующих условий:

1)
$$\Lambda' = \bigcup_{k=0}^{\infty} T^k (\lambda'_a), \quad \rho(s, T^k(\lambda'_a)) \to 0 \quad \text{при} \quad k \to \infty,$$
 (5)

2)
$$\Lambda' = \bigcup_{k=0}^{\infty} T^{-k}(\lambda'_a), \quad \rho(s, T^{-k}(\lambda'_a)) \to 0 \quad \text{при} \quad k \to \infty,$$
 (6)

где λ_a' — замкнутая дуга кривой Λ' , ограниченная соответственно точками $a \in \Lambda'$ и T(a) или $a \in \Lambda'$ и $T^{-1}(a)$.

Важное свойство отмеченных неподвижных точек описывает Теорема 8. Пусть сохраняющее площадь отображение Т вида

$$x' = \alpha x + \beta y + f(x, y), \quad y' = \gamma x + \delta y + g(x, y)$$

аналитично в некоторой окрестности V точки $\theta = (0, 0)$, а функции f и g в точке θ обращаются в нуль вместе c частными производными первого порядка.

Тогда, если неподвижная точка $\theta = (0, 0) -$ отмеченная, то справедливо неравенство $\alpha + \delta \ge 2$.

С помощью теорем 3, 6, 8 доказывается следующая теорема, содержа-

щая основной результат настоящей работы.

Теорема 9. Пусть $A \subset G$ — множество неподвижных точек отображения T. Предположим, что множество A — компактно. Пусть, далее, $s_{\kappa} \subseteq A$ — все отмеченные неподвижные точки отображения T, $\kappa=1,\ldots,k$. Пусть, наконец, кривая $\Lambda_{\mu}' \subset G$ удовлетворяет условиям (5) вместе с некоторой точкой $s_{\kappa\mu}$, $\mu=1,\ldots,m$, а кривая $\Lambda_{\nu}'' \subset G$, удовлетворяет условиям (6) вместе с некоторой точкой $s_{\kappa\nu}$, $\nu=1,\ldots,n$. Предположим дополе

нительно, что кривые
$$\Lambda_{\mu}=\bigcup\limits_{r=0}^{\infty}T^{-r}\left(\Lambda_{\mu}^{'}\right)$$
 и $\Lambda_{\nu}=\bigcup\limits_{r=0}^{\infty}T^{r}\left(\Lambda_{\nu}^{''}\right)$ удовлетворяют условию $((\bigcup\limits_{\mu=1}^{m}\overline{\Lambda}_{\mu})\cup(\bigcup\limits_{\nu=1}^{n}\overline{\Lambda}_{\nu}^{*}))\subset G.$

Тогда $m=n<\infty$ и для любой кривой Λ_{μ} найдется кривая Λ_{μ}^{*} такая, что $\Lambda_{\mu}\cap\Lambda_{\nu,\mu}^{*}\neq 0$, а для любой кривой Λ_{ν}^{*} найдется кривая Λ_{μ} такая, что $\Lambda_{\nu}^{*}\cap\Lambda_{\mu}$ $\neq 0$.

Очевидно, что точки множеств $\Lambda_{\mu} \cap \Lambda_{\nu_{\mu}}^* \neq 0$ и $\Lambda_{\nu}^* \cap \Lambda_{\mu_{\nu}} \neq 0$ лежат на двоякоасимптотических траекториях отображения T.

Объединенный институт ядерных исследований Дубна

Поступило 20 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. Moser, Comm. Pure and Appl. Math., 9, 673 (1956).