УДК 518:517.944.947

МАТЕМАТИКА

С. Г. МИХЛИН

ОБ ОДНОМ КЛАССЕ КООРДИНАТНЫХ ФУНКЦИЙ ВАРИАЦИОННО-РАЗНОСТНОГО МЕТОДА

(Представлено академиком В. И. Смирновым 2 XII 1972)

В статьях $\binom{1}{2}$ был указан способ построения довольно широкого класса координатных функций для вариационно-разностного метода; эти функции получаются сдвигом и изменением масштаба независимых переменных из некоторых фиксированных «исходных» функций. Близкое построение предложено также Стрэнгом и Фиксом $\binom{3}{4}$. Исходные функции должны удовлетворять некоторым соотношениям (формулы (7) статьи $\binom{1}{4}$), гарантирующим полноту соответствующей координатной системы в пространстве $W_p^{(s)}(\Omega)$, где Ω — любая конечная область m-мерного эвклидова пространства R_m . Эти же соотношения (ниже мы будем называть их фундаментальными), гарантируют полноту той же координатной системы и в $W_p^{(s)}(\Omega)$, если область Ω такова, что любую функцию из $W_p^{(s)}(\Omega)$ можно продолжить на все пространство R_m с сохранением класса $\binom{5}{4}$, так будет, например, если $\partial \Omega \equiv \mathrm{Lip}_1$ (6).

В статье (2) показано, что построение исходных функций, удовлетворяющих фундаментальным соотношениям, удается провести достаточно просто и сами эти функции имеют достаточно простую структуру, если m=1 или s=1; уже в случае m=s=2 исходные функции оказываются

довольно громоздкими.

Ж.-П. Обэн (⁷), используя некоторый специальный класс одномерных координатных функций, предложил строить многомерные координатные функции как произведения одномерных. К сожалению, основное неравенство, характеризующее полноту построенной системы, доказано в (⁷) только для функций некоторого множества, неплотного в соответствующем соболевском пространстве, поэтому доказательство полноты, данное-Ж.-П. Обэном, кажется автору недостаточным.

В настоящей заметке прием перемножения одномерных координатных функций будет обоснован для функций, рассмотренных в статьях (1, 2).

Ниже мы сохраняем терминологию и обозначения заметки $(^1)$, за одним исключением: вектор или мультииндекс вида (a, a, \ldots, a) будет обозначаться не через a, а через a.

Пусть τ — вещественная переменная и $\omega_0(\tau)$, $\omega_1(\tau)$, ..., $\omega_{s-1}(\tau)$ — одномерные исходные функции, подчиненные требованиям заметки (¹); в частности, эти функции удовлетворяют фундаментальным соотношениям при m=1. Если s=1, то положим

$$\sigma_{\underline{0}}(t) = \prod_{k=1}^{m} \omega_{0}(t_{k}), \quad t = (t_{1}, t_{2}, \ldots, t_{k}).$$

Соответствующие координатные функции образуют полную систему в $W_p^{(1)}$; этот случай отмечен в статье (2). Ниже будем считать, что s > 1. Пусть $q = (q_1, q_2, \ldots, q_m)$ — любой мультииндекс, удовлетворяющий неравенству $0 \le |q| \le s$. Положим

$$\sigma_q(t) = \prod_{k=1}^m \omega_{q_k}(t_k). \tag{1}$$

Отметим очевидные свойства функций (1): $\sigma_q \in C^{(s-1)}(R_m) \cap W_p^{(s)}(R_m)$; $\sup p \sigma_q \subset \{t: 0 \le t \le 2\}; D^{\alpha}\sigma_q(1) = \delta_{\alpha q}, 0 \le |\alpha|, |q| \le s.$

Рассматривая функции (1) как исходные, можно построить *m*-мерные координатные функции вариационно-разностного метода по формуле

$$\varphi_{qjh}(x) = \sigma_q(x/h - j), \qquad (2)$$

где h — произвольное положительное число и j — произвольный целочисленный вектор. Если u(x) — достаточно гладкая функция, то можно строить (ср. $\binom{1}{2}$) ее приближенное выражение в виде

$$u_h(x) = \sum_{|q|=0}^{s} \sum_{j} h^{[q]} D^q u((j+1)h) \varphi_{qjh}(x).$$
 (3)

Допустим, что $u\in C^{(s)}(\overline{\Omega})$. Будем рассматривать два случая: либо $\partial\Omega\subseteq C^{(s)},$ либо

$$D^{\mathbf{v}}u|_{\partial\Omega}=0, \quad 0\leqslant |\gamma|\leqslant s.$$

В первом случае, применяя известный прием Хестенса, можно продолжить функцию u(x) на все пространство R_m с сохранением класса так, чтобы носитель продолженной функции был компактным; во втором случае мы продолжим функцию u(x) нулем вне Ω . Пусть $u^*(x)$ — продолженная функция, и пусть ее носитель лежит в кубе $Q = \{t: 0 \le t \le a\}$. Построим кубическую сетку, меньшие кубы которой имеют ребро h, а большие — ребро 2h, причем отношение a/(2h) есть целое число. Выделим из h меньший куб Q_{ij} с нижней вершиной $x_0 = j_0 h$ и оценим величину

$$\int_{Q_{d_n}} |D^{\alpha} u^*(x) - D^{\alpha} u_h^*(x)|^p dx, \quad |\alpha| = s,$$

$$\tag{4}$$

где $u_h^*(x)$ построено по формуле (3) с заменой u на u^* и Ω на Q. Для того чтобы система (2) была полна в $\mathring{W}_p^{(s)}$ (Q), достаточными будут те условия, при которых интеграл (4) имеет оценку $o(h^m)$.

Будем упрощать разность под знаком интеграла (4), отбрасывая слагаемые, которые равномерно стремятся к нулю вместе с h. Прежде всего заменим $D^a u^*(x)$ на $D^a u^*(x_0)$. Далее, в выражении (3) отличны от нуля только те слагаемые, для которых $j=j_0-i$, так что

$$D^{\alpha}u_h^*(x) = \sum_{|q|=0}^s \sum_{i\in I} h^{|q|-s} D^q u^*(x_0 + (\underline{1}-i)h) D^{\alpha}\sigma_q\left(\frac{x}{h} - j_0 + i\right).$$

Величину $D^q u_h^*(x_0 + (1-i)h)$ разложим по строке Тейлора в окрестности точки x_0 до членов порядка $h^{s-|q|}$ включительно. Остаточные члены дадут в интервале (4) величину $o(h^m)$ и могут быть отброшены. Под знаком интеграла (4) останется полином относительно h^{-1} ; этот интеграл будет иметь оценку $o(h^m)$, если указанный полином будет тождественно равен нулю. Отсюда вытекают соотношения

$$\sum_{q \leqslant \gamma} \sum_{i \in I} \frac{(\underline{1} - i)^{\gamma - q}}{(\gamma - q)!} \, \sigma_q(t + i) = \frac{t^{\gamma}}{\gamma!}, \tag{5}$$

$$0 \le |\gamma| \le s$$
, $0 \le t \le 1$,

достаточные для того, чтобы

$$\|u^* - u_h^*\|_{\dot{W}_p^{(s)}(Q)}^p = \int_{Q|\alpha| = s} \sum_{|\alpha| = s} |D^\alpha u^*(x) - D^\alpha u_h^*(x)|^p dx \xrightarrow[h \to 0]{} \tilde{0}.$$
 (6)

Докажем теперь, что соотношения (5) на самом деле выполняются. Фундаментальные соотношения, которым удовлетворяют функции $\omega_0(\tau)$,

 $\omega_1(\tau), \ldots, \omega_{s-1}(\tau)$, можно записать в виде

$$\sum_{q_k \leqslant \gamma_k} \sum_{i_k = 0, 1} \frac{(1 - i_k)^{\gamma_k - q_k}}{(\gamma_k - q_k)!} \,\omega_{q_k}(t_k + i_k) = \frac{t_k^{\gamma_k}}{\gamma_k!} \,, \quad 0 \leqslant \gamma_k \leqslant s. \tag{7}$$

Возьмем произвольный мультииндекс $\gamma = (\gamma_1, \gamma_2, \ldots, \gamma_m), \gamma \leqslant \underline{s}$, нанишем равенства (7) для значений $\gamma_1, \gamma_2, \ldots, \gamma_m$, перемножим эти равенства и положим $q = (q_1, q_2, \ldots, q_m)$. В результате получится, что произведения (1), рассматриваемые для всевозможных значений $q, \underline{0} \leqslant q \leqslant \underline{s} - 1$, удовлетворяют соотношениям

$$\sum_{q \leqslant \gamma} \sum_{i \in I} \frac{(\underline{1} - i)^{\gamma - q}}{(\gamma - q)!} \, \sigma_q(t + i) = \frac{t^{\gamma}}{\gamma!} \,, \quad \underline{0} \leqslant \gamma \leqslant \underline{s}. \tag{8}$$

Тождества (5) получаются из (8), если рассматривать последние лишь при тех γ , для которых $0 \le |\gamma| \le s$.

Предельное равенство (6) теперь доказапо. Отброспв в нем интеграл по $O\setminus\Omega$, получим

$$\|u - u_h^*\|_{W_p^{(s)}(\Omega)} \xrightarrow{h \to 0} 0.$$
 (9)

Соотношение (9) показывает, что система исходных функций (1), в которой мы ограничиваемся значениями q, $0 \le |q| \le s$, порождает по формуле (2) систему координатных функций, которая полна в $W_p^{(s)}$ (Ω) в первом из упомянутых выше случаев и в $W_p^{(s)}$ (Ω) — во втором. Используя аппарат средних функций, можно доказать, что в первом случае система (2) полна в $W_p^{(s)}$ (Ω) в предположении, что $\partial \Omega \subseteq \text{Lip}_1$.

Ленинградский государственный упиверситет им. А. А. Жданова

Поступило 24 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. Г. Михлин, ДАН, 200, № 3 (1971). ² С. Г. Михлин, Зап. научн. семин. ЛОМИ АН СССР, 23 (1971). ³ G. Fix, G. Strang, Stud. Appl. Math., 48, № 3 (1969). ⁴ G. Strang, G. Fix, A Fourier Analysis of the Finite Element Variational Method, Preprint. ⁵ С. Г. Михлин, ДАН, 209, № 2 (1973). ⁶ А. Р. Calderon, Proc. Symp. in Pure Math., 4, 33 (1961). ⁷ J.-P. Aubin, J. Math. Anal. and Applications, 21, № 2, 356 (1968).