УДК 517.5

MATEMATHKA

В. П. МОТОРНЫЙ

О НАИЛУЧШЕЙ КВАДРАТУРНОЙ ФОРМУЛЕ ВИДА $\sum\limits_{k=1}^{n}p_{k}f(x_{k})$ ДЛЯ НЕКОТОРЫХ КЛАССОВ ПЕРИОДИЧЕСКИХ ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЙ

(Представлено академиком С. М. Никольским 15 XII 1972)

Рассмотрим некоторый класс H r раз дифференцируемых на отрезке [а, b] функций и квадратную формулу С. М. Никольского (см. (1) стр. 90) для функций из этого класса

$$\sum_{k=1}^{n} \sum_{l=0}^{\rho} p_{kl} f^{(l)}(x_k), \quad 0 \leqslant \rho \leqslant r-1,$$
 тде узлы $a \leqslant x_1 < x_2 < \ldots < x_n \leqslant b$ и коэффициенты p_{kl} произвольны.

Пусть

$$R_n^{\rho}(f) = R_n^{\rho}(f; x_k, p_{kl}) = \int_a^b f(x) dx - \sum_{k=1}^n \sum_{l=0}^{\rho} p_{kl} f^{(l)}(x_k).$$

Задача о наилучшей квадратурной формуле для класса Н, постановка которой принадлежит А. Н. Колмогорову, состоит в том, чтобы найти ве-

личину $\mathscr{E}_n(H) = \inf_{p_{kl}, x_k} \sup_{f \in H} |R_n^{\rho}(f)|$, а также систему узлов $\{\bar{x}_k\}$ и весов $\{\bar{p}_{kl}\}$,

для которых достигается точная нижняя грань. Квадратурная формула (1)

с узлами \bar{x}_k и весами \bar{p}_{kl} называется наилучшей для класса H.

Решение этой задачи для некоторых классов дифференцируемых функций рассматривалось во многих работах*, но методы исследования формулы (1), являющиеся дальнейшим развитием идей С. М. Никольского (1, 2), по-видимому, не доведены до совершенства, позволившего бы решить задачу о наилучшей квадратурной формуле вида (1) при всех $0 \le \rho \le$ $\leq r-1$ и любых r. Точное решение задачи известно лишь для ho, близких $\kappa r \ (\rho \geqslant r-3)$. Однако большой интерес представляет исследование квадратурной формулы (1), в которой $\rho = 0$, т. е. формулы вида

$$\sum_{k=1}^{n} p_k f(x_k). \tag{2}$$

Несмотря на простоту и важность для приложений, решение задачи о наилучшей квадратурной формуле вида (2) известно только для малых г.

В настоящей работе дано решение задачи о наилучшей квадратурной формуле вида (2) для широких классов дифференцируемых периодических функций при любых $r=1,2,\ldots$ Введем следующие классы функций. H_{ω} — класс 2π -периодических непрерывных функций, модуль непрерывности которых $\omega(f; t) \leq \omega(t)$, где ω — заданный модуль непрерывности. Через $W^r H_{\omega}$, $r=1, 2, \ldots$, будем обозначать класс 2π -периодических функдий, у которых r-я производная $f^{(r)}(x) \in H_{\omega}$. При $\omega(t) = t$, положим $\hat{W}^r =$

^{*} Обстоятельный обзор работ, связанных с изучением квадратурной формулы (1) дан в (4, 5) (см. Добавления, стр. 297).

 $=W^{r-1}H_{\omega},\ r=1,\ 2,\dots$ Пусть, далее, W^rL — класс 2π -периодических функций, имеющих абсолютно непрерывную производную (r-1)-го порядка и таких, что $\int\limits_{-\infty}^{2\pi}|f^{(r)}(x)|\,dx\leqslant 1.$

Для класса H_{ω} наплучшая квадратурная формула вида (2) найдена в работе (3). При этом использовалась очень простая идея. Сначала просчитывается величина $R_n = \sup_{f \in H_{\omega}} R_n^0(f; x_k, p_k)$, где $p_k = \frac{2\pi}{n}$, $x_k = \frac{2\pi}{n} k$, $k = 0, 1, \ldots, n-1$. R_n является оценкой сверху для величины $\mathcal{E}_n^0(H_{\omega})$. Затем для любой системы точек $x = \{0 = x_0 < x_1 < \ldots < x_{n-1} < 2\pi\}$ строится функция $f_x(t) \in H_{\omega}$, неотрицательная и обращающаяся в нуль только в этих точках и такая, что $\int\limits_0^{2\pi} f_0(x) \, dx \leqslant R_n$. Из этого неравенства следует, что $\mathcal{E}_n^0(H_{\omega}) = R_n$ и наилучшей квадратурной формулой для класса H_{ω} является формула прямоугольников

$$\frac{2\pi}{n} \sum_{k=0}^{n-1} f\left(\frac{2\pi}{n} k\right). \tag{3}$$

Этот прием позволяет легко, в отличие от непериодического случая (см. (1)), решить задачу о наилучшей квадратурной формуле для класса $W^{i}H_{\omega}$ (ω — выпуклый модуль непрерывности). Однако уже для класса W^{3} реализация этого приема (см. (6)) сопряжена с определенными трудностями, возникающими как при построении соответствующей для данного случая функции $f_{x}(t) \in W^{3}$, так и при оценке интеграла от нее. (Как стало автору известно, задача о наилучшей квадратурной формуле вида (2) для классов W^{r} , $r \leq 3$, решена В. М. Тихомировым, но решение неопубликовано.)

Основной результат работы содержится в следующей теореме.

Теорема. Для классов W^r , $r=4,5,\ldots,W^rH_{\omega}$ (ω — выпуклый модуль непрерывности, r нечетное) и W^rL (r — четное) * наилучшей квадратурной формулой вида (2) является формула прямоугольников (3). При этом имеют место равенства

где $f_{n,r}(x)$ $(n=1,\,2,\ldots;\,r=0,\,1,\ldots)-2\pi\,/\,n$ -периодические функции со средним значением, равным нулю на периоде, у которых r-я производная нечетна и определяется равенствами

$$\begin{split} f_{n,\,r}^{(r)}\left(x\right) &= f_{n,\,0}\left(x\right) = \begin{cases} ^{1/_{2}\Omega}\left(2x\right), & 0 \leqslant x \leqslant \pi/(2n), \\ ^{1/_{2}\Omega}\left(\frac{2\pi}{n} - 2x\right), & \pi/n \leqslant x \leqslant \pi/n, \end{cases} \\ & \mathscr{E}_{n}^{0}\left(W^{r}L\right) = \frac{\pi}{2} \frac{K_{r-1}}{n^{r}} \quad (r \text{ четное}). \end{split}$$

Приведем схему доказательства теоремы для класса W^r . Пусть M_n^r — множество функций f(x) из класса W^r , имеющих 2n экстремумов на полумитервале $[0, 2\pi)$ и производные которых $f^{(r)}(x)$, меняя 2n раз знак на полуинтервале $[0, 2\pi)$, принимают значения только —1 или 1. Для некото-

^{*} Для классов W^rL , $r=1,\ 2,\ 3,\$ задача о наилучшей квадратурной формуле решена в работах $({}^4,\ ^7).$

рой функции $f(x) \in M_n^{\mathsf{T}}$ рассмотрим точки $\xi_1, \xi_2, \ldots, \xi_{2n}$ полуинтервала

 $[0, 2\pi)$, в которых $f^{(r)}(x)$ меняет знак.

Лемма 1. Существует окрестность $U_{\mathfrak{d}}(\xi)$ точки $\xi = \{\xi_i\}_{i=1}^{2n-1}$ странстве R_{2n-1} , обладающая следующим свойством: для любого $\eta \in U_{\delta}(\xi)$ найдется точка ξ_{2n}' ($\eta_{2n-1} < \xi_{2n}' < \eta_1 + 2\pi$), такая, что функция $f_n(x)$, r-я производная которой $f_n^{(r)}(x)$ меняет знак в точках $\eta_1, \eta_2, \ldots, \eta_{2n-1}, \xi_{2n}$ (при этом, если $f^{(r)}(x)$ меняет знак в точке ξ_i с «+» на «-», то $f_n^{(r)}(x)$ меняет знак в точке η_i в том же порядке), принадлежит множеству M_n^r .

Рассмотрим любой интервал $(a, a + 2\pi)$, содержащий n точек x_1, x_2, \dots \dots, x_n , в которых f(x) имеет минимум. Число δ можно выбрать так, что для любого $\eta \in U_{\delta}(\xi)$ точки y_1, y_2, \dots, y_n , в которых $f_{\eta}(x)$ достигает минимума, содержатся в интервале $(a, a + 2\pi)$. Положим теперь для любого

 $\eta \in U_{\delta}(\xi)$

$$\varphi(\eta) = \{y_1, y_2, \ldots, y_n, f(y_2) - f(y_1), f(y_3) - f(y_1), \ldots, f(y_n) - f(y_1)\}.$$

 Π емм а 2. Существует замкнутая окрестность $\overline{U}_{\delta'}(\xi) \subset U_{\delta}(\xi)$, которую отображение ф взаимно однозначно и взаимно непрерывно отображает в nространство R_{2n-1} .

Затем используя лемму 2 и теорему об инвариантности внутренних

точек (см. (8), стр. 196) можно доказать следующее утверждение.

 Π емма 3. Для любой системы точек $x = \{0 = x_0 < x_1 < \ldots < x_{n-1} < \ldots < x_n < x_n < \ldots < x_n < \ldots < x_n < x_n < \ldots < x_n < x_n$ $<2\pi$ } существует функция $f_x(t) \in M_n^{\tau}$, принимающая в этих точках минимальное, равное нулю, значение.

Далее доказывается неравенство

$$\int_{0}^{2\pi} f_{x}(t) dt \geqslant R_{n}(W^{r}), \tag{4}$$

где величины

$$R_n\left(W^r\right) = \sup_{f \in W^r} R_n^0\left(f; \frac{2\pi}{n}k, \frac{2\pi}{n}\right) = \frac{2\pi K_r}{n^r}$$

вычислены В. Н. Малоземовым (см. (¹¹, ¹²)).

При оценке интеграла $\int_{0}^{2\pi} f_{x}(t) dt$ широко используются полученные

Н. П. Корнейчуком (9) свойства дифференцируемых периодических функций, связанные с перестановками, а также некоторые новые утверждения типа теоремы сравнения А. Н. Колмогорова (10). Из неравенства (4) следует, что наилучшей квадратурной формулой вида $(^2)$ для классов W^r является формула прямоугольников (3). Так как производная $f_x'(t)$ обращается в нуль в точках $x_0, x_1, \ldots, x_{n-1}$, то формула прямоугольников будет

наилучшей и среди квадратурных формул вида
$$\sum_{k=0}^{n-1} \{p_k f(x_k) + p_k' f'(x_k)\}.$$

Днепропетровский государственный университет им. 300-летия воссоединения Украины с Россией

Поступило 13 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 С. М. Никольский, Квадратурные формулы, М., 1958. ² С. М. Никольский, УМН, 5, 2 (36), 165 (1950). ³ Н. П. Корнейчук, Матем. заметки, 3, № 5, 565 (1968). ⁴ Н. П. Корнейчук, Н. Е. Лушпай, Изв. АН СССР, сер. матем., 33, № 6, 1416 (1969). ⁵ Дж. Алберг, Э. Нильсон, Дж. Уолш, Теория сплайнов и ее приложения, М., 1972. ⁶ Т. Н. Бусарова, Исследования по современным проблемам суммирования и приближения функций и их приложениям, Днепропетровск, 1972. ⁷ Н. Е. Лушпай, Матем. заметки, 6, № 4, 475 (1969). ⁸ П. С. Александров, Комбинаторная топология, М.— Л., 1947. ⁹ Н. П. Корнейчук, Изв. АН СССР, сер. матем., 35, № 1, 93 (1971). ¹⁰ А. Н. Колмогоров, Уч. зап. Мословск. унив., в. 30, Математика, № 3, 3 (1939). ¹¹ В. Н. Малоземов, Матем. заметки, 2, № 4, 357 (1967). ¹² В. Н. Малоземов, Вестн. Ленингр. унив., № 1, 52 (1967). 52 (1967).