> Член-корреспондент АН СССР Н. С. НАМЕТКИН, В. М. ВДОВИН, Е. Ш. ФИНКЕЛЬШТЕЙН, А. М. ПОНОВ, А. Ю. КОШЕВНИК

О ВЗАИМОДЕЙСТВИИ МЕТИЛЕНЦИКЛОБУТАНА И 1-МЕТИЛЦИКЛОБУТЕНА СО СПИРТАМИ

Ранее мы исследовали поведение метиленциклобутана и 1-метилциклобутена в условиях контакта с PdCl₂ и, в отличие от работ (¹, ²), показали, что оба углеводорода не способны к расщеплению под действием этой соли (³). Стабильность ненасыщенных 4-членных циклических структур побудила нас испытать некоторые соединения палладия в качестве возможных катализаторов реакций, проходящих с участием двойных сеязей метиленциклобутана и 1-метилциклобутена. Для сравнения в качестве объектов исследования были использованы также открытопепные структурные аналоги обоих циклических углеводородов: 2-метилбутен-1 и 2-метилбутен-2.

Реакции проводились в растворах диоксана и спиртов в запаянных эвакуированных ампулах. После окончания термостатирования реакционные смеси фракционировали и продукты реакции анализировали при помощи г.ж.х. и и.-к. и я.м.р. спектроскопии. Спиртовые растворы, кроме

того, обрабатывали водой для удаления растворителя.

По данным г.ж.х. и я.м.р., в растворе диоксана в присутствии $PdCl_2$ метиленциклобутан медленно изомеризовался в 1-метилциклобутен (температура 100° С; продолжительность термостатирования 10-12 час.; концентрация метиленциклобутана 50 мол.%, $PdCl_2-1,25$ мол.%; конверсия 7-10%). Эксперименты с метиленциклобутаном, проведенные в растворе метанола в диапазоне $20-130^{\circ}$ С, показали, что этот олефии реагировал по двум направлениям, вклад которых зависел от температуры опыта (табл. 1).

Хроматографический анализ (фаза — сложной эфир триэтиленгликоля и μ -масляной кислоты, l=3 м, газ-носитель — гелий) продуктов превращения метиленциклобутана, проведенный после обработки реакци-

Таблица 1 Превращения метиленциклобутана в среде метилового спирта в присутствии $PdCl_2$ (количество $PdCl_2 \sim 2,5$ мол. % в расчете на метиленциклобутан)

№ опыта	U _{МЦБ}	Т-ра опыта, °С	Продолж.	Состав свободной от спирта отконденсированной части катализата по данным г. ж. х., %				
			опыта, час.	=CH ₂	= −CH ₃	CH ₃ O-CH ₃		
1 2 3 4 5	1:1 1:1 1:1 1:1 1:4	22 100 110 120 130	24 12 12 12 12	74 30 25 16 2	17 30 23 20 3	9 40 52 64 95		

Исходный олефин	Адд у кт	Выход, %	Т. кип. °С	n_D^{20}	d_{4}^{20}	Мол. вес (криоск.)	
				-		найд.	вычисл.
Метиленцикло- бутан	1-метил- 1-меток- сицикло	65—70 **	94	1,4121	0,8368	98	100
1-метилцикло- бутен	бутан						
2-метилбутен-1 2-метилбутен-2	2-метил- 2-меток- сибутан	60—65 ***	85—86/751	1,3944	0,7712	101	102

^{*} Спектр я.м.р. (60 Мгц): с — синглет, т-триплет, к — квартет, м- мультиплет. ** Т-ра опы-

онной смеси водой, показал во всех случаях наличие трех компонентов *. Компонент с наибольшим временем удерживания, выделенный в качестве индивидуального соединения, оказался по данным и.-к. и спектров я.м.р., элементного анализа, определения MR_{D} и молекулярного веса (табл. 2), 1-метил-1-метоксициклобутаном, т.е. продуктом присоединения метилового спирта к двойной связи метиленциклобутана. Идентификация с помощью эталонных соединений методом г.ж.х. показала, что двумя другими компонентами являлись непрореагировавший метиленциклобутан и продукт миграции двойной связи метиленциклобутана из семициклического положения в эндоциклическое — 1-метилциклобутен. В спектре я.м.р. смеси этих углеводородов, образовавшихся в процессе реакции и освобожденных фракционированием от 1-метил-1-метоксициклобутана (опыт 2, табл. 1) обнаружены сигналы, характерные (* , *) для метиленциклобутана и 1-метилциклобутена. Такие же сигналы присутствовали

и в спектре искусственно приготовленной смеси этих олефинов.

Эффективное присоединение метанола в подобных условиях наблюдалось и при использовании 1-метилциклобутена в качестве исходного олефина, Продуктом присоединения, как и в случае метиленциклобутана. оказался 1-метил-1-метоксициклобутан (табл. 2). Подобным образом реагируют нециклические аналоги метиленциклобутана и 1-метилциклобутена. При 120° С и термостатировании в течение 10-12 час. в присутствии $2,5\,$ мол. $\%\,$ хлористого палладия в среде метанола (объемные соотношения олефина и метанола 1:1) проходила изомеризация 2-метилбутена-1 в 2-метилбутен-2 на 30%. Параллельно был выделен 2-метил-2-метоксибутан с выходом 60-65% в расчете на исходный олефии. Структура его подтверждена спектром я.м.р. (табл. 2), в котором синглет с 8 1,07 м.д. (две эквивалентные метильные группы при четвертичном углеродном атоме) имел вдвое большую интенсивность, чем синглет с в спектре 1-метил-1-метоксициклобутана. Сигнал от этильной группы состоит из триплета и квартета, несколько искаженных из-за того, что разность их химических сдвигов (в гц) только в 5 раз превышает константу спин-спинового взаимодействия, составляющую ~ 7 гд. Это же соединение получено и при взаимодействии 2-метилбутена-2 с метанолом в аналогичных условиях (табл. 2).

^{*} Во всех опытах наблюдалось образование небольших количеств продуктов уплотнения ($\sim 2-3\%$), структура которых не исследовалась.

MR	C, %		Н, %		δ, м.д. *				Область	
найд. вычисл	найд.	вычисл	найд.	вычисл	OCH ₃	C-CH ₃	(CH ₂) ₃	-CH ₂	-CH ₃	поглощения СОС, см
29,741 29,831	71,26	72,00	11,76	12,00	3,08 c.	1,25 c.	1,4— 2,4м.		_	110—135
31,664 31,728	69,69	70,58	13,76	13,72	3,07 с.	1,07 c.	_	1,45к.	0,83 т.	1100—135

та 120 °C. *** Т-ра опыта 100 °C

Таким образом, наблюдаемые нами в присутствии PdCl₂ и метилового спирта превращения олефинов можно представить следующими схемами:

Соотношение интенсивностей сигналов в спектрах я.м.р. 1-метил-1-метоксициклобутана (I) и 2-метил-2-метоксибутана (II) соответствуют предложенным структурным формулам.

Использование вместо хлористого палладия некоторых комплексных соединений двухвалентного палладия, например $\mathrm{PdCl_2}\cdot (C_6H_5CN)_2$ и $\mathrm{CH_2}$

 $C1(CH_2)_2$ — $PdCl_2$, показало, что последние тоже вызывают превращения как метиленциклобутана, так и 2-метилбутена-1 по обоим приведенным выше направлениям.

Пентен-1 не показал склонности к присоединению метанола. В присутствии 2—4 мол. % PdCl₂ в растворе метанола при температуре 100° С он с высоким выходом изомеризовался в пентен-2.

Полученные данные по присоединению метилового спирта согласуются с закономерностями реакции электрофильного присоединения спиртов к олефинам. Последняя, как известно, проходит по правилу Марковникова и ускоряется электродонорными заместителями у двойной связи (³).

В нашем случае инициаторами реакции присоединения, по-видимому, являются кислые агенты, возникающие в процессе превращения двухвалентного палладия, например хлористый водород, образующийся наряду с металлическим палладием в результате восстановления Pd спиртом в среде олефина (7):

$$PdCl_2 + CH_3OH \xrightarrow{[One\phinH]} Pd(O) + 2HCl + CH_2O.$$

Не исключено также, что в иниципровании принимают участие палладий-водородные кислоты, источником которых могут быть $PdCl_2$, HCl и спирт.

Использование в реакции присоединения к метиленциклобутану более тяжелых спиртов — этилового, изопропилового, трет.-бутилового как в присутствии PdCl₂ так и HCl, показало, что выходы аддуктов уменьшаются с увеличением объема углеводородного радикала в спирте (ROH).

Условия опытов: температура 100° С, продолжительность 10 час., количество $PdCl_2-2.5$ мол.%, $v_{\text{мид}}/v_{\text{ROH}}=1:1$; выходы эфиров по данным г.ж.х.: для $R=CH_3$ 40%; C_2H_5 25%; $uso-C_3H_7$ 8%; трет.- C_4H_9 2-3%. При этом степень конверсии метиленциклобутана в 1-метилциклобутен в растворах этих спиртов в присутствии $PdCl_2$ составляла 20-25%.

Структура выделенного продукта присоединения этилового спирта к метиленциклобутану:

была подтверждена спектром я.м.р., в котором имеются следующие сигналы: триплет $\delta=1,10$ м.д., J=7 гц от CH_3 протонов OC_2H_5 -группы, синглет $\delta=1,27$ м.д. от CH_3 -группы, геминальной с OC_2H_5 ; мультиплет в области $\delta=1,2-2,3$ м.д. от CH_2 -групп циклобутанового кольца; квартет $\delta=3,26$ м.д., J=7 гц — от CH_2 протонов OC_2H_5 -группы.

Исследование сравнительной активности метиленциклобугана и 1-метилинклобутена в этой реакции в присутствии PdCl₂ встретило

затруднения, вызванные изомеризацией метиленциклобутана.

Поэтому для проведения конкурирующих реакций в качестве катализатора был использован HCl. Анализом г.ж.х. установлено, что в интервале температур 22—50° метиленциклобутан заметно активнее присоединяет метиловый спирт, чем 1-метилциклобутен.

Эти данные находятся в соответствии с данными Тафта и сотрудни-

ков (8) по присоединению воды к обоим циклическим олефинам.

Институт нефтехимического синтеза им. А. В. Топчиева Академии наук СССР Москва Поступило 15 II 1973

цитированная литература

¹ R. Rossi, P. Diversi, L. Porri, J. Organomet. Chem., **31**, с. 40 (1971).
² R. Rossi, P. Diversi, L. Porri, Macromolecules, **5**, 247 (1972).
³ H. C. Наметкин, В. М. Вдовин и др., ДАН, **209**, 112 (1973).
⁴ Каталог спектров ЯМР фирмы «Varian», **1**, 1962, спектр № 109.
⁵ J. Shabtai, E. Gil-Av, J. Org. Chem., **28**, 2893 (1963).
⁶ A. G. Evans, J. Halpern, Trans. Farad. Soc., **48**, 1034 (1952).
⁷ W. S. Knowless, M. J. Sabacky, Chem. Commun, № 22, 1445 (1968).
⁸ P. Riesz, R. W. Taft, R. H. Boyd, J. Am. Chem. Soc., **79**, 3724 (1957).