УДК 519.35

MATEMATUKA

м. м. хрусталев

НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ ДЛЯ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

(Представлено академиком Н. Н. Красовским 27 Х 1972)

Пусть $[t_0, t_1]$ — отрезок числовой прямой, X — n-мерное, U — r-мерное эвклидовы пространства с элементами $t, x = (x^1, x^2, \ldots, x^n), u = (u_1, u_2, \ldots, u^r)$ соответственно; F(x) — вещественная функция, заданная на X; f(x, u) — непрерывная функция, отображающая $X \times U$ в X.

Рассмотрим функционал

$$J(x(t), u(t)) = F(x(t_1)),$$
 (1)

заданный на множестве $D(t_0, x_0)$ пар функций (x(t), u(t)), определяемом условиями:

1°) u(t) измерима, ограничена и при всех $t \in [t_0, t_1]$ $u(t) \in Q \subset U$;

 $(x(t)) = x_0$ финсировано;

 3°) п. в. (почти всюду) на T пара (x(t), u(t)) удовлетворяет дифференциальному уравнению

dx / dt = f(x, u). (2)

Поставим задачу об абсолютном минимуме функционала (1), т. е. об отыскании последовательности $\{(x_{\alpha}(t),\,u_{\alpha}(t))\}\subset D(t_0,\,x_0)$ (минимизирующей последовательности), на которой $\lim J(x_{\alpha}(t),\,u_{\alpha}(t))=l(t_0,\,x_0),\,l(t_0,\,x_0)$

 $x_0) = \inf_{x \in \mathcal{X}} J(x(t), u(t)).$

Сформулируем дополнительные требования на функции f, F, не входящие в определение множества D:

 4°) функция F(x) дважды непрерывно дифференцируема на X;

 5°) первая и вторая производные функции f(x, u) по x определены и

непрерывны на $X \times U$;

 6°) для любой точки (τ, x_{τ}) такой, что $\|x_{\tau}\| < r$, $t_{0} \le \tau \le t_{1}$, существует минимизирующая последовательность $\{(x_{\alpha}(t), u_{\alpha}(t))\} \subset D(\tau, x_{\tau})$, удовлетворяющая условию $\|(x_{\alpha}(t), u_{\alpha}(t))\| < M(r)$. Здесь $\|\cdot\|$ – эвклидова норма соответствующего вектора. Условие 6°) выполнено, папример, если существуют постоянные a, b такие, что $\|f(x, u)\| \le a + b\|x\|$ и множество O ограничено.

 $ar{B}$. Ф. Кротовым (1) были получены весьма общие достаточные условия для задачи оптимального управления и высказаца гипотеза о необходимости этих условий. В статье для рассматриваемой задачи получены достаточные условия, являющиеся обобщением условий В. Ф. Кротова, и показано существование функции $\phi(t,x)$, им удовлетворяющей. Эта функции является решением обобщенного уравнения Беллмана. Тем самым доказывается также необходимость и достаточность условий оптимальности в форме обобщенного уравнения Беллмана. Необходимые и достаточные условия, содержащиеся в теореме, не связаны со свойствами решения задачи: существованием решения, свойствами функции Беллмана и др.

Теорема (принцип оптимальности). Для того чтобы последовательность $\{(x_{\alpha}(t), u_{\alpha}(t))\} \subset D(t_0, x_0)$ минимизировала функционал (1) на $D(t_0, x_0)$, достаточно, а если выполнены условия 4°) — 6°), то и необходи-

мо существование вещественной функции $\varphi(t, x)$, заданной на множестве $B = [t_0, t_1] \times X$, и множества $P \subseteq B$ меры (Лебега) нуль, удовлетворяющих условиям:

1) $\varphi(t,x)$ локально, т. е. в окрестности каждой точки $(t,x) \in B$, идов-

летворяет условию Липшица (в частности, она непрерывна);

2) $\varphi(t,x)$ дифференцируема на $B \setminus P$;

3) $\varphi_x(t, x) f(x, u) + \varphi_t(t, x) \leq 0$, $(t, x) \in B \setminus P$, $u \in Q$ (3 $\text{десь } \varphi_x f = Q$) $=\sum \varphi_{x}if^{i});$

4) $F(x) + \varphi(t_1, x) \ge 0, (t_1, x) \in B$;

5) $\lim J(x_{\alpha}(t), u_{\alpha}(t)) = -\varphi(t_0, x_0).$

Кроме того, для любых φ , P, удовлетворяющих условиям 1) — 4), имеет место неравенство

$$J(x(t), u(t)) \geqslant -\varphi(t_0, x_0), (x(t), u(t)) \in D(t_0, x_0).$$
(3)

Доказательство достаточности. Пусть $(x(t), u(t)) \in D(t_0, t_0)$ (x_0) . Обозначим $y(t) = x(t) + \Delta x$, $\Delta x \in X$. Очевидно, п. в. на $[t_0, t_1] dy / dt = x(t)$ dx/dt = f(x(t), u(t)). Из теорем теории меры следует, что для любого $\varepsilon > 0$ существует вектор Δx , $\|\Delta x\| < \varepsilon$, такой, что мера тех t, для которых $(t, y(t)) \in P$, равна нулю.

В силу 1) функция $\varphi(t, y(t))$ удовлетворяет условию Липшица на $[t_0, t_1]$ и, следовательно, и. в. дифференцируема. Далее, по теореме о диф-

ференцировании сложной функции,

$$d\varphi(t, y(t)) / dt = \varphi_x(t, y(t)) f(x(t), u(t)) + \varphi_t(t, y(t))$$

и. в. на $[t_0, t_1]$. Из 1) также следует, что функция $\|\varphi_x(t, y(t))\|$ ограпичена.

Учитывая 3), 4), получим

$$J(x(t), u(t)) = F(x(t_1)) + \varphi(t_1, y(t_1)) - \varphi(t_0, y(t_0)) - \int_{t_0}^{t_1} [d\varphi(t, y(t))/dt] dt \geqslant$$

$$\geqslant -\varphi(t_0, x_0) + [\varphi_t'(t_1, y(t_1)) - \varphi(t_1, x(t_1))] + [\varphi(t_0, x(t_0)) - \varphi(t_0, y(t_0))] - \int_{t_0}^{t_1} [\varphi_x(t, y(t))(f(x(t), u(t)) - f(y(t), u(t)))] dt.$$

Из этого неравенства, ограниченности функций y(t), u(t), $\|\varphi_x(t, y(t))\|$, непрерывности $\varphi(t, x), f(x, u)$ и произвольности ε следует неравенство (3). Сопоставление (3) с 5) завершает доказательство.

Прежде чем переходить к доказательству необходимости, докажем одно

вспомогательное утверждение.

Определение. Вещественную функцию $w(\tau, x_{\tau}) = -l(\tau, x_{\tau})$, определенную на В, будем называть функцпей Беллмана.

Пусть W(r) — открытый шар в X радиуса r с центром в начале координат, $B(r) = [t_0, t_1] \times W(r)$.

Пемма. Если выполнены условия 4°) — 6°), то функция $w(\tau, x_{\tau})$ + $+ C \| (\tau, x_{\tau}) \|^2$ выпукла на B(r) при достаточно большом значении постоянной С.

Доказательство. Обозначим через $f^*(x, u)$ дважды непрерывно дифференцируемую на $X \times U$ функцию, совпадающую с f(x, u), если

 $\|(x, u)\| < M(r_1), r_1 > r$, и равную нулю, если $\|(x, u)\| \ge r_2 > M(r_1)$.

Фиксируем $(\tau, x_{\tau}) \in B(r)$ и каждому элементу $(x_{\alpha}(t), u_{\alpha}(t))$ минимивирующей последовательности $\{(x_{\alpha}(t),\ u_{\alpha}(t))\}\subset D(au,\ x_{ au})$ поставим в соответствие уравнение $dy_{\alpha}(t)$ / $dt = f^*(y_{\alpha}(t), u_{\alpha}(s))$; $s = \tau + (t_1 - \tau)(t - \xi)$ / / $(t_1 - \xi)$, если $\xi < t_1$, и $s = t_1$, если $\xi = t_1$; $y \in X$. Это уравнение на отрезке $[\xi, t_1]$ имеет единственное решение $y_\alpha(t, \xi, \eta)$, удовлетворяющее условию $y_{\alpha}(\xi, \xi, \eta) = \eta$.

Функция $y_{\alpha}(t_1, \xi, \eta)$ дважды непрерывно дифференцируема по (ξ, η) , в силу свойств $f^*(x, u)$ ее первые и вторые производные ограничены на B, а сама функция ограничена на B(r). Из этого следует, что первые и вторые производные функции $G_{\alpha}(\xi, \eta) = -F(y_{\alpha}(t_1, \xi, \eta))$ непрерывны па B(r) и ограничены. Поэтому, при достаточно большом значении постоянной C, функция $G_{\alpha}(\xi, \eta) + C\|(\xi, \eta)\|^2$ выпукла, что эквивалентно неравенству

$$\beta G_{\alpha}(\tau + \xi, x_{\tau} + \eta) + G_{\alpha}(\tau - \beta \xi, x_{\tau} - \beta \eta) + C\beta(1 + \beta) \|(\xi, \eta)\|^{2} \geqslant$$

$$\geqslant (1 + \beta) G_{\alpha}(\tau, x_{\tau}), \tag{4}$$

 $\beta \geqslant 0, \ (\tau + \xi, x_{\tau} + \eta), \ (\tau - \beta \xi, x_{\tau} - \beta \eta) \in B(r).$ We wrong θ^0 for a parameter with the B denotes B denotes B A

Условие 6°) гарантирует, что всюду на B функция $w(\tau, x_{\tau})$ принимает конечные значения. Из определения функций w, f^*, G_{α} следует, что при достаточно малом $\varepsilon > 0$

$$G_{\alpha}(\tau + \xi, x_{\tau} + \eta) \leq w(\tau + \xi, x_{\tau} + \eta), \|(\xi, \eta)\| < \varepsilon$$
 (5)

H, TAK KAK $y_{\alpha}(t, \tau, x_{\tau}) = x_{\alpha}(t), t \in [\tau, t_{1}],$

$$\lim_{\alpha \to \infty} G_{\alpha}(\tau, x_{\tau}) = w(\tau, x_{\tau}). \tag{6}$$

Постоянные C, ε можно выбрать не зависящими от α и выбора точки

 $(\tau, x_{\tau}) \in B(r)$.

Из (5), (6) следует, что функцию G_x в (4) можно заменить на w, если $\|(\xi, \eta)\|$, $\|(\beta \xi, \beta \eta)\| < \varepsilon$. Так как (τ, x_τ) — произвольная точка B(r), из этого следует выпуклость функции $w(\tau, x_\tau) + C\|(\tau, x_\tau)\|^2$ на B(r).

Доказательство необходимости. Положим $\phi(t, x) =$

= w(t, x), тогда, по определению функции w,

$$\varphi(t_i, x) + F(x) = 0, \quad x \in X, \tag{7}$$

и для любого $(\tau, x_{\tau}) \in B(r)$

$$\lim_{\alpha \to \infty} J(x_{\alpha}(t), u_{\alpha}(t)) = -\varphi(\tau, x_{\tau}), \tag{8}$$

если последовательность $\{(x_{\alpha}(t), u_{\alpha}(t))\}\subset D(\tau, x_{\tau})$ минимизирует J на

 $D(\tau, x_{\tau})$. Из (7), (8) следуют 4), 5).

Из доказанной выше леммы следует выпуклость функции $\varphi(t,x)+C\|(t,x)\|^2$. Так как выпуклая функция почти всюду дифференцируема (²) и локально удовлетворяет условию Липшица (³), а функция $\|(t,x)\|^2$ обладает теми же свойствами, функция $\varphi(t,x)$ удовлетворяет условиям 1), 2) теоремы. Остается доказать 3). Пусть существуют $(\xi,\eta) \in B \setminus P$ и $\xi \in Q$ такие, что $\varphi_x(\xi,\eta)f(\eta,\xi)+\varphi_t(\xi,\eta)>0$. Тогда найдется число $\xi'>\xi$ такое, что $w(\xi',\tilde{x}(\xi'))>w(\xi,\eta)$, где $\tilde{x}(t)$ — решение уравнения (2) с начальным условием $x(\xi)=\eta$ и функцией $u(t)=\xi=$ const. Пусть $\{(x_\alpha(t),u_\alpha(t))\}$ — носледовательность, минимизирующая функ-

Пусть $\{(x_{\alpha}(t), u_{\alpha}(t))\}$ — носледовательность, минимизирующая функционал (1) на $D(\xi', \widetilde{x}(\xi'))$. Определим последовательность $\{(y_{\alpha}(t), v_{\alpha}(t))\} \subset D(\xi, \eta)$ следующим образом: $v_{\alpha} = \xi, y_{\alpha} = \widetilde{x}(t)$, если $t \in [\xi, \xi')$, и $v_{\alpha}(t) = u_{\alpha}(t), y_{\alpha}(t) = x_{\alpha}(t)$, если $t \in [\xi', t_1]$. По построению последова-

тельности $\{(y_{\alpha}(t), v_{\alpha}(t))\}$

$$\lim_{\alpha \to \infty} J(y_{\alpha}(t), v_{\alpha}(t)) = -w(\xi', \bar{x}(\xi') < -w(\xi, \eta),$$

что противоречит определению функции $w(\xi, \eta)$. Полученное противоре-

чие завершает доказательство теоремы.

Одна п та же функция $\phi(t, x)$, построенная при доказательстве необходимости условий теоремы, решает задачу об абсолютном минимуме функционала (1) для всех множеств $D(\tau, x_{\tau})$, а не только для множества $D(t_0, x_0)$, т. е. так называемую задачу синтеза.

Неравенство 3), рассматриваемое совместно с условиями 1), 2), (7), (8), естественно называть обобщенным уравнением Беллмана. Могут существовать и другие, отличные от функции Беллмана, функции ф (функции Кротова), удовлетворяющие достаточным условиям оптимальности.

Доказанная теорема допускает различные обобщения, в частности, на задачи с фиксированным левым и правым концом, остановиться на которых не позволяет ограниченность объема статьи.

Поступило 25 I 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Ф. Кротов и др., Новые методы вариационного исчисления в динамике полета, М., 1969. ² К. Reidemeister, Math. Ann., 83, 1—2, 116 (1921). ³ А. И. Перов, Укр. матем. журн., 18, 3, 129 (1966).