УДК 534.1:620.178.2

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Н. Б. УРЬЕВ, академик П. А. РЕБИНДЕР

ОСНОВНЫЕ СТАДИИ ОБРАЗОВАНИЯ И РАЗРУШЕНИЯ КОАГУЛЯЦИОННЫХ СТРУКТУР И ИХ РОЛЬ В ОПТИМИЗАЦИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В СТРУКТУРИРОВАННЫХ ДИСПЕРСНЫХ СИСТЕМАХ

Для эффективного управления процессом образования дисперсных материалов и твердых тел с заданной структурой и свойствами необходимо изучить закономерности структурообразования на всех этапах, начиная с момента взаимодействия твердых и жидких дисперсных фаз до завершения фазовых переходов в системе (1, 2).

Наиболее эффективно управление процессом структурообразования осуществляется на его начальных стадиях, в период превалирования в системах структур коагуляционного типа. Именно в этот период свойства

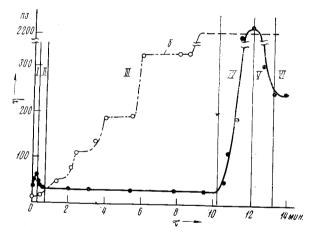


Рис. 1. Стадии образования и разрушения коагуляционных структур. a — смешение при вибрации $I=I_k$, b — смешение без вибрации

структуры в основном определяют плотность, однородность и дисперсность конечной структуры реальных твердых тел и дисперсных материалов после завершения фазовых переходов (кристаллизации, полимеризации и т. д.).

Ранее было показано (3), что оптимальная форма воздействий на систему при смешении дисперсных фаз, уплотнении систем и их деформации в период преимущественно коагуляционного структурообразования, это вибрационные воздействия в сочетании с малыми добавками поверхностноактивных веществ.

Для установления закономерностей образования высокопаполненных тонкодисперсной твердой фазой тиксотропных коагуляционных структур исследовались особенности изменения при вибросмещении макроструктуры модельной системы, образованной дисперсией природного кальциевого бентонита (CaB) в сочетании с тонкодисперсным ($S=3000~{\rm cm^2/r}$) квар-

цем: соотношение по весу $CaB : SiO_2 = 20 : 80\%$, водотвердое отношение $B / T = 0.49 \div 0.25$.

Преимущественное значение смешения по сравнению с остальными технологическими процессами определяется тем, что основы будущей структуры закладываются уже в процессе взаимного распределения образующих ее компонентов.

Кинетика структурообразования изучалась в процессе смешения исходных твердой и жидкой фаз в специально сконструированном лопа-

стном вибросмесителе емкостью $2000\,$ см 3 с регулируемым числом оборотов (от 14 до 220 в минуту) и параметрами вибрации корпуса с перемепными частотами ($500 \div 2200\,$ колеб/мин) и амплитудами ($0.5 \div 2\,$ мм).

В торцовой стенке смесителя смонтирован одноцилиндровый ротационный вискозиметр. В процессе исследований изучалась кинетика изменения напряжения сдвига и эффективной сдвиговой вязкости в системе η , $P(\tau)$, однородности распределения твердой фазы (с помощью индикаторов - стальных 500 и шариков), плотности и прочности агрегатов P_m , средвеличины поверхности агрегатов макроэлементов структуры, средней расчетной прочности элементарного контакта $\bar{F}_{\scriptscriptstyle \mathrm{K}}$ между частицами твердой фазы в структуре, определяемой в соответствии с теорией прочности пористых систем (2).

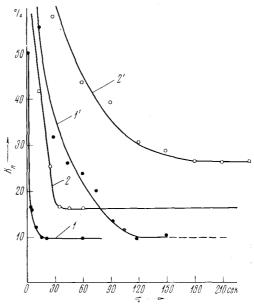


Рис. 2. Кинстика изменения однородности распределения дисперсных фаз. В сухих дисперсных порошках $(I,\ 2)$ и в системе с жидкой дисперсионной средой $(I',\ 2')$ при сметении с вибрацией $(I,\ I')$ и без нее $(2,\ 2')$

Изучение кинетики изменения этих величин (и прежде всего η , $P(\tau)$) указывает на существенные качественные различия в процессах структурообразования без вибрации и в сочетании с ней (рис. 1, табл. 1).

В начале процесса вибросмешения происходит образование и разрушение агрегатов из тонкодисперсных частиц твердой фазы (стадии I и II). После достижения первого максимума η , $P(\tau)$ превалирующим становится процесс разрушения структуры на отдельные рыхлые агрегаты. Элемент структуры рыхлого агрегата — смачивающие капиллярные мениски между отдельными группами частиц твердой фазы, связываемыми капиллярным давлением P_{σ} , максимальное значение которого соответствует полному смачиванию ($P_{\sigma} = 4\sigma/\delta$, где σ — поверхностное натяжение на границе жидкость — пар, δ — размер (диаметр) отдельных агрегатов (скоплений) из частиц твердой фазы).

Этим объясняется сравнительно легкое разрушение крупных рыхлых агрегатов с образованием более мелких и прочных. Разрушение крупных агрегатов сопровождается снижением величин η , $P(\tau)$ (стадия II).

Одновременно с возникновением смачивающих менисков, образованием грубодисперсной структуры, рыхлых агрегатов из нее и их разрушением идет непрерывная миграция жидкой фазы под действием капиллярного давления к наиболее узким зазорам между частицами. Этот процесс продолжается и тогда, когда разрушение рыхлых агрегатов закончено и из них образовались более мелкие и плотные агрегаты в виде гранул. Внутри гранул зафиксирована та степень микро- и макронеоднородности структу-

ры и распределения различных твердых фаз, которая соответствовала состоянию системы в конце предыдущей стадии (рис. 2).

Постоянство значения η , $P(\tau)$ на этой III стадии указывает на то, что в макроструктуре смешиваемой системы в целом не происходит существенных изменений. Внутри же агрегатов при этом продолжаются активные процессы объемной миграции в наиболее тонкие поры и двухмерной миграции жидкой фазы — воды, как наиболее активного п.а.в. для гидрофильных поверхностей твердых фаз, к участкам истинных контактов между частицами.

Эта стадия характеризуется преимущественной ролью процесса двухмерной миграции. Она сопровождается возникновением двухмерного давления по границам адсорбционных слоев воды $P_s = \sigma_0 - \sigma(\Gamma) = bx$, где $b = \text{RT}\Gamma_{\text{M}}$; $x = \Gamma / \Gamma_{\text{M}}$ — адсорбционное покрытие ($x \ll 1$), достаточным для того, чтобы раздвинуть истинные атомные контакты на расстояние, большее или равное расстоянию ближней коагуляции (10^{-7} см) (4). При этом

Таблица 1 Кинетика изменения структурных характеристик системы в процессе вибрации

Время смешения т, сек.	Плотность агрегатов р, г/см³	Средн. удельн. поверхность агрегатов S ₁ , см ² /г	Предельное напряжение сдвига P_m , r/cm^2	Сведняя расчетная прочность контактов $\widetilde{F}_{\rm K}.10^7$ дин
10 20 30 45 60 90 120 180 360 600	1,50 1,66 — 1,74 1,76 1,85 1,90 1,91	4000 	200 500 4000 3000 4000 5000 6000 7000 6900	7,8 5,8 6,5 9,7 9,8 9,2 86 47 60

происходит снижение прочности контакта (адсорбционное понижение прочности). Однако прочность структуры агрегата в целом возрастает, так как вибрация резко увеличивает плотность упаковки частиц в агрегате (рост ф) и, таким образом, уменьшение скачком прочности контакта компенсируется увеличением их числа в единице объема.

В дальнейшем в результате интенсивных соударений агрегатов при вибрации число истинных коагуляционных контактов с фиксацией частиц твердой фазы на расстоянии ближней коагуляции внутри агрегата растет, что подтверждается ростом средней расчетной величины \overline{F}_{κ} (табл. 1).

Образование таких коагуляционных контактов во всем объеме гранул, полное смачивание всей внутренней поверхности частиц в агрегатах-гранулах по существу является наиболее характерной особенностью этой стадии, которую поэтому можно назвать стадией формирования сплошной коагуляционной структуры внутри агрегатов.

Завершающая стадия структурообразования — коалесценция агрегатовгранул, чему способствуют их активные соударения при вибрации в сочетании со сдвиговыми деформациями всей системы при вращении лопастей смесителя. Образование сплошной пластично-вязкой (или упруго пластично-вязкой) системы на этой стадии (IV) превалирует над процессами ее разрушения и эффективные напряжения сдвига и вязкость η , $P(\tau)$ при этом резко возрастают. Образующаяся сплошная двухфазная коагуляционная структура настолько прочна, что разрушение ее при заданной постоянной интенсивности механических воздействий может быть незначительным, далеким от предельного (стадии V и VI). Таким образом, по мере

перехода от одной стадии к последующим образуются все более плотные и прочные элементы структуры. Вместе с тем степень неравномерности распределения частиц твердых фаз различных видов, зафиксированная на предыдущей стадии, даже при длительном воздействии на систему передается «по наследству» в последующие стадии, в которых достижение однородности распределения еще более затруднено возникновением более прочных структурных элементов. Поэтому для достижения максимальной однородности и плотности на завершающей стадии коагуляционного структурообразования необходимо обеспечить предельное разрушение того вида структуры, который является основным на каждой из предыдущих стадий структурообразования.

Эти переходы от одного вида макроструктуры к другому могут завертаться при вибросмещении частично или полностью. В высоконаполненных дисперсной твердой фазой системах переход к сплошной плотной двухфазной коагуляционной структуре возможен лишь при последующем

виброуплотнении, сопровождающемся деформацией системы.

Таким образом при вибрации с удельной мощностью $I_{\rm k}=a^2\omega^3$, соответствующей границе перехода от псевдоожижения к псевдокипению, пронесс структурообразования разделяется на последовательные стадии, локализованные во всем объеме и во времени. Важное отличие структурированных систем с высокодисперсной твердой фазой от грубодисперсных состоит в том, что для первых эта граница определяется постоянным значением удельной мощности I (5), а для вторых — постоянной величиной ускорения $a\omega^2/g\approx 1$ (6).

При $I=I_{\rm E}$ вероятность однородного распределения градиента скоростей во всем объеме системы максимальна. Следствием этого является пространственно-временная однородность в разрушении и образовании структуры и в распределении различных дисперсных фаз, что и определяет гомогенность системы в целом. Вместе с тем пространственно-временная однородность в разрушении и образовании структуры — основная причина разделения процесса структурообразования в целом на отдельные стадии.

Выбор оптимальных параметров технологических процессов переработки структурированных дисперсных систем и получения дисперсных материалов должен осуществляться в соответствии с основными стадиями коагуляционного структурообразования, а режимы технологических операций: интенсивность и длительность смешения, уплотнения и формования,— должны отвечать предельному разрушению структуры на каждой стадии структурообразования. Вместе с тем становится возможным разделить во времени процессы массообмена при механических воздействиях от процессов активных фазовых превращений во всем объеме системы.

Институт физической химии Академии наук СССР Москва **Поступило** 5 VII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ П. А. Ребиндер, Сборн. Физико-химическая механика дисперсных структур, «Наука», 1966, стр. 3. ² П. А. Ребиндер, Основные проблемы физико-химической механики дисперсных структур и твердых тел. Матер. V Всесоюзн. конфер. по физико-химической механике, Уфа, 1971. ³ Н. Б. Урьев, там же, стр. 137. ⁴ А. Ф. Полак, Теория твердения мономинеральных вяжущих веществ, М., 1967. ⁵ Н. Б. Урьев, ДАН, 200, № 1, 156 (1971). ⁶ В. А. Членов, Н. В. Михайлов, Сушка сыпучих материалов в виброкипящем слое, 1967.