УДК 517.537

MATEMATUKA

А. А. РЯБИНИН

ОДНОРОДНОЕ УРАВНЕНИЕ СВЕРТКИ НА ОСИ

(Представлено академиком В. С. Владимировым 7 XII 1972)

Пусть C — пространство функций, определенных и непрерывных на всей действительной оси, с топологией равномерной сходимости на компактах, C^* — сопряженное пространство. Если $s \in C^*$, то существует отрезок [a, b]

и на нем функция ограниченной вариации $\sigma(t)$ такие, что $s(t) = \int\limits_a^b f(t) \, d\sigma(t)$

для $\forall f \in C$. В работах Дельсарта, Л. Шварца, Кахана, Леонтьева и др. (см. по этому поводу $\binom{1}{1}$) изучались функции $f \in C$ и удовлетворяющие однородному уравнению свертки

$$s * f \equiv \int_{a}^{b} f(x+t) d\sigma(t) = 0, \quad -\infty < x < \infty.$$
 (1)

Решения уравнения (1) называют периодическими в среднем функциями. К числу основных фактов в теории функций, периодических в среднем, относятся теорема единственности, утверждающая, что периодическая в среднем функция определяется своими значениями на произвольном отрезке длиной b-a, и теорема аппроксимации периодической в среднем функции посредством линейных комбинаций функций $e^{i\mu_v x}$, $xe^{i\mu_v x}$, ...

$$\ldots, x^{n_v-1}e^{i\mu}$$
 $v^x(\mu_v -$ нули функции $L(\mu) = \int_a^b e^{i\psi t} \, d\sigma(t)$ кратности $n_v, v = 1, 2, \ldots$) в топологии C .

В этой работе устанавливаются аналогичные утверждения для периодических в среднем функций из пространств Бесова $B_{1,1}^r$ ((3); см. также (4)).

По определению, функция f принадлежит к классу $B_{1,1}^r$ [a, b], 0 < r < 1, если $f \in L_1[a, b]$ и конечна величина

$$N_{1,\,r}=\int\limits_{0}^{b-a}h^{-(1+r)}\omega_{1}\left(f;\,h
ight) dh\,,$$

где

$$\omega_1(f; h) = \sup_{0 < t \le h} \int_a^{b-t} |f(x+t) - f(x)| dx.$$

Класс $B_{1,1}^{\ r}$ [a, b] является банаховым пространством с нормой

$$||f||_{B_{1,1}^{r}[a,b]} = ||f||_{L_{1}} + N_{1,r}(f).$$

В этом пространстве линейный непрерывный функционал имеет, как показано в работе (5), вид $s(f) = \int_a^b f(t) \, dg_s(t)$, где $g_s(t)$ принадлежит гёльверовскому классу $\Lambda_{1-\tau}[a,b]$ с показателем 1-r, причем интеграл пони(тется в смысле, более слабом, чем интеграл Римана — Стильтьеса.

Через $B_{1,\,\,\mathrm{loc}}^r$ обозначим пространство функций, определенных на всей действительной оси и на каждом конечном отрезке $[a,\,b]$, принадлежащих $B_{1,1}^r$ $[a,\,b]$. Топология в $B_{1,\,\,\mathrm{loc}}^r$ определяется набором полунорм $\{\|f\|_{B_{1,\,\,\mathrm{loc}}^r$, $\|f\|_{B_{1,\,\,\mathrm{loc}}^r}$ отрезьный линейный функционал на $B_{1,\,\,\mathrm{loc}}^r$ то найдется отрезок $[a,\,b]$ и функция $g(t) \in \Lambda_{1-r}[a,\,b]$ такие, что $s(t) = \int_a^b f(t)\,dg(t)$ для $\nabla f \in B_{1,\,\,\mathrm{loc}}^r$.

Нашей задачей является изучение решений уравнения свертки

$$s*f \equiv \int_{a}^{b} f(x+t) dg(t) = 0, \quad -\infty < x < \infty, \tag{2}$$

тде $f \in B_1^r$, $g \in \Lambda_{t-r}[a, b]$. Без ограничения общности можно считать, что отрезок [a, b] симметричен относительно точки t = 0, т. е. a = -q, b = q, q > 0.

Следуя (1), введем функцию

$$L\left(\mu\right) = \int_{-\sigma}^{q} e^{i\mu t} dg\left(t\right)$$

назовем характеристической функцией уравнения (2), а функцию

$$\omega_{L}(\mu, \alpha, f) = i e^{-i\alpha\mu} \int_{-q}^{q} \left[\int_{0}^{t} f(\alpha + t - u) e^{i\mu u} du \right] dg(t)$$

— интерполирующей функцией, здесь $f \in B_{1, loc}^{\tau}$, $-\infty < \alpha < \infty$, μ — любое комплексное число.

 Π емма 1. Пусть функция g(t) не имеет интервалов постоянства, при-

мыкающих к точкам -q, q.

Тогда: 1) функции $L(\mu)$ и $\omega_L(\mu, \alpha, f)$, как функции μ , являются целыми функциями экспоненциального типа; 2) для почти всех θ из $(0, 2\pi)$ существует предел $\lim_{r\to\infty} r^{-1} \ln |L(re^{i\theta})| = q |\sin \theta|$; 3) для действительных μ верно $|L(\mu)| \le C |\mu|^r$; 4) для любого μ справедливо $|\omega_L(\mu, 0, f)| \le C |\mu|^r e^{q |\operatorname{Im} \mu|}$.

Введем функцию

$$\frac{\omega_L(\mu, \alpha, f)}{L(\mu)} e^{i\mu x} \tag{3}$$

как функцию переменного µ. На основании леммы 1 отметим сл<mark>едующие ее</mark>

фундаментальные свойства.

Свойство 1. Пусть β — нуль функции $L(\mu)$ кратности m и пусть $\psi(x) = x^p e^{i\beta x}$, где $0 \le p < m$. Тогда вычет функции (3) равен нулю во всех нулях $L(\mu)$, отличных от β и равен $\psi(x)$ в точке $\mu = \beta$.

C войство 2. Пусть $f \in B^r_{1,loc}$ и удовлетворяет уравнению (2). Тогда

вычеты функции (3) не зависят от а, лежащих на действительной оси.

Свойство 3. Пусть $f \in B_{1, \text{ loc}}^r$ и удовлетворяет уравнению (2). Если функция (3) не имеет особенностей, то f(x) = 0 почти всюду на действительной оси.

Из свойств 2 и 3 вытекает

Теорема 1 (единственности). Пусть $f \in B_{1, loc}^r$ и удовлетворяет уравнению (2). Если f(x) = 0 почти всюду на [-q, q], то f(x) = 0 почти всюду на оси.

Доказательство теоремы аппроксимации встретило трудности, связанные с тем, что свертка s * f, где $s \in (B_1^r)^*$, $f \in B_{1,\log}^r$ принадлежит C, однако использование метода, примененного в (2) в другой ситуации, позволило эти трудности обойти. Имеют место следующие утверждения.

 Π емма 2. Π усть eta — нуль $L(\mu)$ и $L_1(\mu) = rac{L(\mu)}{\mu - eta}$. Тогда

$$L_1(\mu) = \int_{-\pi}^{\mathbf{q}} e^{i\mu t} v(t) dt,$$

где v(t) непрерывна на [-q,q].

Tе орема 2. Пусть f(x) — решение уравнения (2). Тогда функция

$$\psi(x) = f(x) - P_{\beta}(x) e^{i\beta x}, \quad P_{\beta}(x) e^{i\beta x} = \frac{1}{2\pi i} \int_{C_{\beta}} \frac{\omega_{L}(\mu, a, f)}{L(\mu)} e^{i\mu x} d\mu$$

 $(C_{\rm B} - {\it okpymhoctb}\ c$ центром в точке ${\it B}$, внутри которой нет нулей функции $L(\mu)$, отличных от $\mu = \beta$) есть решение уравнения

$$s_1 * \psi \equiv \int_{-q}^{q} \psi(x+t) v(t) dt = 0$$

$$(4)$$

с характеристической функцией L. (ц)

Теорема 2 позволила вопрос о решении уравнения (2) свести к вопросу о решении уравнения (4). Оператор свертки, порождаемый функционалом

 $s_1(f) = \int f(t) v(t) \, dt$, является уже непрерывным линейным оператором

нз $B_{1, \, \log B}^r B_{1, \, \log c}^r$. Теорема 3 (аппроксимации). Пусть $f \in B_{1, \, \log c}^r$ и удовлетворяет урав- $B_{1,\log}^r$ посредством конечных линейных комбинаций функций системы $e^{i\mu_{\mathbf{v}}x}$, $xe^{i\mu_{\mathbf{v}}x}$, ..., $x^{n_{\mathbf{v}}-1}e^{i\mu_{\mathbf{v}}x}$, $\mathbf{v}=1, 2, \ldots$

 $e\partial e \mu_v - всевозможные нули функции <math>L_1(\mu)$, а $n_v - кратности$.

Доказательство. Аппроксимация будет иметь место, если любой функционал $\phi \in (B_{1, loc}^r)^*$ и обращающийся в нуль на функциях системы (5), обращается в нуль на любом решении уравнения (4). Пусть

$$\varphi(f) = \int_a^b f(t) dg_{\varphi}(t), \quad L_{\varphi}(\mu) = \int_a^b e^{i\mu t} dg_{\varphi}(t), \quad f_1(x) = (\varphi * f)(x).$$

Оказывается, $f_1(x)$ является решением (4) для любой функции f(x), являющейся решением (4), и верно равенство

$$\frac{\omega_{L}(\mu, 0, f_{1})}{L(\mu)} = \omega_{L}(\mu, 0, f) \frac{L_{\varphi}(\mu)}{L(\mu)} - \omega_{L_{\varphi}}(\mu, 0, f).$$

Поскольку $\frac{L_{\varphi}(\mu)}{L(\mu)}$ целая, то, используя свойство 3 функции (3), выводим, что $f_1(x) = 0$ почти всюду. Но $f_0(x)$ — непрерывная функция, поэтому

$$f_1(0) = \int_a^b f(t) dg_{\varphi}(t) = 0.$$

Теорема установлена.

Автор благодарит чл.-корр. АН СССР А. Ф. Леонтьева за внимание к работе.

Математический институт им. В. А. Стеклова

Поступило

Академии наук СССР

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Ф. Леонтьев, Изв. АН СССР, сер. матем., 29, № 2 (1965). ² А. Ф. Леонтьев, Матем. сборн., 67, № 4 (1965). ³ О. В. Бесов, Тр. Матем. инст. им. В. А. Стеклова АН СССР, № 60 (1961). С. М. Никольский, Приближение функций многих переменых и теоремы вложения, «Наука», 1969. ⁶ В. И. Мацаев, М. З. Соломяк, Матем. сборн., 88, № 4 (8) (1972).