УДК 546.171.1.5:547.772:547.78

КИМИХ

В. Н. АРТЕМОВ, С. Н. БАРАНОВ, Н. А. КОВАЧ, О. П. ШВАЙКА

РЕАКЦИИ РЕЦИКЛИЗАЦИИ В РЯДУ 5-АРИЛИДЕН-1,3-ТИАЗОЛИДОНОВ ПРИ ДЕЙСТВИИ ГИДРАЗИНОВ

(Представлено академиком И. Я. Постовским 21 III 1973)

Гидразин и его производные в реакциях рециклизации с азольными и азолидиновыми системами способны реагировать в качестве 1,2-дицентровых нуклеофилов (¹, ²). С простейшими замещенными азолидинов — азолидиндионами, роданинами, изороданинами, иминотиазолидонами, оксазолидонами, селеназолидонами взаимодействие с гидразином осуществляется по 2,4-положению азолидинового цикла с рециклизацией в триазолоны или триазолтионы (²). При введении арилиденового остатка в положение 5 тназолидинового цикла в системе появляется экзоциклический электрофильный центр в α-положении арилиденового заместителя. Поэтому можно ожидать взаимодействия гидразина с арилидентиазолидонами или по циклическим 2,4-электрофильным центрам с рециклизацией в триазолоны/триазолтионы, или с участием экзоциклического электрофильного центра с образованием соответствующей бициклической системы или производных пиразолина.

Как показали настоящие исследования, 5-арилиденизороданины (I, X=S) и 5-арилиден-4-иминотиазолидоны (I, X=NH) при действии гидразина и метилгидразина рециклизуются в соответствующие производные

триазолона II, аналогично (2) (схема 1).

$$\begin{array}{c} CZEMB 1 \\ Y \\ CH \\ S \\ NH \\ S \\ NH \\ CH \\ S \\ NH \\$$

Как и в ранее описанных случаях (3), при наличии тионной серы или иминогруппы в положении 4 азолидинового цикла гидразины первоначально атакуют именно это место и реакция, видимо, протекает как квази-1,2-присоединение гидразина по 2,4-атомам углерода азолидинового кольца. Реакцию проводят при нагревании реагентов (60—100°, 20—30 мин.) в органических растворителях (в спирте, диоксане, диметилформамиде), откуда продукт выпадает в виде осадка. С эквимолярными количествами азолидонов I и метилгидразина образуются триазолоны II, содержащие тиольную группу. В избытке гидразина и метилгидразина получаются гидразонотриазолоны III.

Структура полученных триазолонов подтверждается данными элементарного анализа, и.-к. спектрами и химическими свойствами. Отрицатель-

ная реакция с реактивом Фелинга соединений II на гидразиновую группу указывает, что последняя замкнута в цикле. Их устойчивость к кислотному гидролизу свидетельствует о том, что продукты не являются изомерными 4-гидразоно-5-арилиденизороданинами, которые в этих условиях гидролизовались бы до соответствующих 5-арилидентиазолидиндионов (I, X=O) согласно (2). Триазолоны II дают положительную реакцию с нитропруссидом натрия на сульфгидрильную группу, а триазолоны III — положительную реакцию с реактивом Фелинга на гидразиновую группу и соответствующие бензилиденпроизводные IV. В и.-к. спектрах триазолонов (в таблетках КВг) обнаруживается карбонильная полоса при 1700 (IIa) и 1740 см⁻¹ (IIIa), частота колебаний сульфгидрильной группы — при 2570 (IIa) и 2560 см⁻¹ (IIб). В области валентных колебаний v_{NH} в спектре вещества IIа найдена одна полоса при 3165 см⁻¹, в спектре IIIа — 4 полосы при 3395, 3330, 3235 и 3210 см⁻¹.

Реакция рециклизации арилиденизороданинов может служить удобным способом синтеза (труднодоступных другими путями) меркапто- и гидразиноарилидензамещенных триазолонов.

Сложнее протекает взаимодействие гидразина с 5-арилидентиазолидиндионами (V, X = O) и особенно с 5-арилиденроданинами (V, X = S). В результате реакции были выделены производные пиразолина (схема 2).

В этом случае атака гидразина, видимо, начинается по экзоциклическому с-электрофильному атому углерода двойной связи арилиденового остатка (по типу взаимодействия гидразинов с сопряженными карбонильными соединениями (4-6)) с последующим образованием пиразолинового кольца и расщеплением исходного тиазолинового ядра. На активность экзоциклической двойной связи в 5-арилидентиазолидонах (V) к нуклеофильным реагентам указывает также образование ими соответствующих продуктов присоединения с различными аминами (7). Учитывая известную реактивность тионной группировки роданинового цикла в реакциях с гидразином (3), нельзя исключить возможность частичного взаимодействия арилиденроданинов V с гидразинами и по положению 2 цикла. Это должно приводить к соответствующим 2-гидразоно-5-арилидентиазолинонам-4 (VI), которые были выделены при гидразинировании азолидонов V (X = S, V = ОСН₃), или продуктам гидразинолиза цикла VII, для которых трудно ожидать циклизации в пиразолоны Х. Поэтому образование последних, видимо, происходит до раскрытия роданинового кольда, согласно схеме 2, а другие направления реакции гидразинирования приводят лишь к побочным продуктам. Образование пиразолидонтиазолидона Х наблюдается в условиях недостатка гидразина, обусловленного расходованием последнего также и на побочные реакции, и связано с сопутствующими процессами

конденсации и восстановления (см. схему 2). В большом избытке гидрази-

на этот продукт не образуется, а получается пиразолидон XI.

При взаимодействии эквимолярных количеств 5-бензилиденроданина (V, X = S) с гидразингидратом в диоксане при комнатной температуре выпадает солеобразный продукт $V \cdot N_2 H_4$, по свойствам аналогичный солям гидразина с другими азолидонами (2). В воде эта соль легко разлагается на исходные компоненты.

Реакцию рециклизации 5-арилидентиазолидиндионов (V, X = O) проводят при кипячении в воде (4 часа) с двукратным избытком гидразингидрата, откуда при охлаждении выпадает пиразолон IX в виде бесцветного осадка. Реакцию 5-арилиденроданинов (V, X = S) с гидразингидратом (1-2-кратное количество) осуществляют при кипячении (около часа, до прекращения выделения сероводорода) в спирте или диоксане, в результате чего выпадает пиразолидонотиазолидон X (выход 30-40%), а из упаренного в вакууме маточника после добавления метанола к маслянистому остатку получают бесцветные кристаллы пиразолидона XI (выход 30-40%). При проведении реакции с 3-4-кратным избытком гидразингидрата в спирте выделен только пиразолидон XI (после упаривания в вакууме раствора и добавления метанола к маслянистому остатку).

Таблипа 1 Полученные в реакциях рециклизации 5-арилиден-1.3-тиазолидонов соединения (см. схему 1 и 2)

М со- едине- ния	X	У	R	Т. пл., °С (раствори- тель для крист.)	Выход, %	Найдено, %				Брутто-	Вычислено, %			
						С	н	N	s	формула	С	н	N	s
Ha	-	Н	$\mathrm{CH_3}$	182—183	65	56,6	4,7	18,0	14,0	C11H11N3OS	56,6	4,7	18,0	13,7
116	_	n-OCH3	CH ₃	(процанол) 196—197	95	54,6	5,0	16,1	12,3	C ₁₂ H ₁₃ N ₃ O ₂ S	54,7	4,9	16,0	12,2
IIIa	-	н	Н	(пропанол) 305—306 (ПМФА)	52	55,5	5,1	32,3		C10H11N5O	55,3	5,1	32,2	-
1116	-	o-OCH3	Н	286-287	60	-	_	28,2	-	C11H13N5O2	-	-	28,2	_
IV	_	o-OCH ₃	Н	(Д М ФА) 208	92	_	_	20,9		C18H17N8O2	-	_	20,9	-
VIa	NH ₂	n-OCH ₃		(метанол)	50	53,0	4,6	16,8	12,8	C11H11N2O2S	52,9	4,5	16,8	12,8
V16	NH ₂	o-OCH ₃	-	(этанол) 310—312	35	-	_	16,8	_	C11H11N3O2S	-	-	16,8	_
VIB	N=CHC6H5	o-OCH ₃	_	(этанол) 290	80	-	_	12,4	_	C18H15N3O2S	_		12,4	-
IXa	_	н	_	(этанол)	70	-	_	17,6	-	C ₉ H ₈ N ₂ O	-	_	17,5	_
IX6	_	n-OCH ₈	_	(этанол) 220—223	63	-	_	14,7	-	C ₁₀ H ₁₀ N ₂ O ₂	_	_	14,7	-
[XB	-	o-OCH ₃	_	(этанол) 172—173	55	63,2	5,5	14,7	-	C ₁₀ H ₁₀ N ₂ O ₂	63,1	5,3	14,7	_
x	-	-	-	(этанол) 294—296	46	65,4	4,5	12,4	9,3	C19 H15 N2O2S	65,3	4,3	12,0	9,2
XI	_		_	(ДМФА) 100—101	30-40	-	-	17,3	-	$C_9H_{10}N_2O$	-	_	17,3	-
XII		=S;)·N ₂ H ₄		(этанол) 101—103	98	47,4	4,5	16,8	25,4	C10H11N3OS	47,4	4,4	16,6	25,3

Строение полученных производных пиразолина подтверждается данными элементарного анализа, отсутствием положительной реакции с реактивом Фелинга на первичную гидразиновую группу и встречными синтезами (см. схему 2) пиразолонов IX- из эквимолярных количеств этилового эфира бензоилуксусной кислоты XII и гидразингидрата при нагревании в спирте (8) (а); пиразолидонов XI- из эквимолярных количеств этилового эфира коричной кислоты XIII и гидразингидрата при нагревании в спирте согласно (9) (б); пиразолидонотиазолидона X- из эквимолярных количеств пиразолидона XI и 5-бензилиденроданина (V, X = S) при нагревании (V, X = S) п

лов (выход 90%) (в). Продукты рециклизации не дают депрессии температур плавления в смешанных пробах с соответствующими соединениями, полученными встречным синтезом, и идентичны им по другим свойствам.

Таким образом, реакции рециклизации с гидразином и метилгидразином 5-арилиден-1,3-тиазолидонов могут протекать не только с образованием триазолиновой, но и пиразолиновой систем в зависимости, видимо, от места первоначальной атаки гидразина: если она осуществляется по циклу — образуются производные триазола, если по экзоциклическому атому — производные пиразолина.

Донецкое отделение физико-органической химии Института физической химии Академии наук УССР Донецк

Поступило 16 III 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ О. П. Швайка, В. И. Фоменко, ДАН. 200, 134 (1971). ² О. П. Швайка, С. Н. Баранов, В. Н. Артемов, ДАН, 186, 1402 (1969). ³ О. П. Швайка, В. Н. Артемов, С. Н. Баранов, Журн. орг. хим., 7, 1968 (1971). ⁴ Т. А. Соколова, Н. П. Запевалова, Усп. хим., 38, 2239 (1969). ⁵ С. R. Cliff, E. W. Collington, G. Jones, J. Chem. Soc. C, 1970, 1490. ⁶ М. Watatani, Chem. Pharm. Bull. (Токуо), 16, 1513 (1968). ⁷ А. Миstafa, W. Asker, М. Е. Sobhy, J. Ат. Сhem. Soc., 82, 2597 (1960). ⁸ Ред. И. Хейльброн, Г. М. Бэнбери, Словарь органических соединений, ИЛ, 1949, стр. 446. ⁹ С. И. Гафт, Н. А. Захарова и др., Журн. орг. хим., 3, 542 (1967).