1973. Tom 211, № 4

УДК 519.217

MATEMATUK A

3. И. БЕЖАЕВА

ЭРГОДИЧЕСКИЕ СВОЙСТВА УСЛОВНЫХ ЦЕПЕЙ МАРКОВА

(Представлено академиком А. Н. Колмогоровым 27 XI 1972)

Пусть на вероятностном пространстве (Ω, B, P) задана однородная двумерная цепь Маркова $\xi_t(\omega)=(\xi_t(\omega),\eta_t(\omega)),\ t=1,2,\ldots,$ с конечным числом возможных значений и переходной матрицей P. Пусть $\xi_t(\omega)$ принимает значения из $X=(x_1,\ldots,x_M),$ а $\eta_t(\omega)$ принимает значения из $Y=(y_1,\ldots,y_L)$. Через $\eta_{u,v}$ будем обозначать в дальнейшем траекторию $\eta_u(\omega),\ldots,\eta_v(\omega)$.

Через $(\xi_t, P\{\cdot | \eta_{1,n}\})$ будем обозначать марковскую цень, которую при почти всех $\eta_{1,n}$ образует семейство случайных величин ξ_t , $t=1,\ldots,n$, относительно условного распределения $P\{\cdot | \eta_{1,n}\}$, так называемую условную

цепь Маркова.

Нас будут интересовать свойства траекторий цепей $(\xi_i, P\{\cdot \mid \eta_{i,n}\})$ и связанные с ними эргодические свойства семейства $(\xi_i, P\{\cdot \mid \eta_{i,n}\})$ при

почти всех уп.п.

1. В этой части мы рассматриваем цепи $\zeta_t(\omega)$, все состояния которых существенные и образуют один эргодический класс. Кроме того, переходная матрица P обладает тем свойством, что для любых $x \in X$, $y, y' \in Y$

$$P\{\eta_{t} = y \mid \eta_{t-1} = y', \xi_{t-1} = x\} = P\{\eta_{t} = y \mid \eta_{t-1} = y'\}. \tag{1}$$

При выполнении (1) процесс $\eta_t(\omega)$ сам является цепью Маркова. Нетрудно также видеть, что если выполнено (1), то при почти всех $\eta_{t,n}$ цепь (ξ_t , $P\{\cdot | \eta_{t,n}\}$) в момент времени t управляется матрицей, зависящей лишь от значений $\eta_{t,t+1}$. Будем обозначать эту матрицу через $Q(\eta_{t,t+1})$. Матрица перехода за m шагов для цепи (ξ_t , $P\{\cdot | \eta_{t,n}\}$), начиная с момен-

$$Q(\eta_{t, t+m}) = Q(\eta_{t, t+1}) \cdot \ldots \cdot Q(\eta_{t+m-1, t+m}).$$

Будем в дальнейшем буквами \mathcal{I} , \mathcal{I} обозначать цепочки вида y_{i_1}, \ldots, y_{i_m} любой конечной длины m. Запись $\eta_{t+1, t+m} = \mathcal{I}$ означает, что $\eta_{t+1} = y_{i_1}, \ldots, \eta_{t+m} = y_{i_m}$.

Через $Q(\mathcal{F})$ мы будем обозначать $Q(\eta_{t+1,\ t+m})$ при $\eta_{t+1,\ t+m}=\mathcal{F}$. Через τ_u^y мы будем обозначать момент u-го попадания в состояние y траектории

цепи $\eta_t(\omega)$.

Для рассматриваемых цепей ζ_t(ω) справедлива следующая

та времени t, зависит лишь от значений $\eta_{t, t+m}$ и равна

Теорема 1. Для любого $y \in Y$ существует единственное разбиение пространства X на g (g не зависит от y) непересекающихся непустых классов N_1^y, \ldots, N_g^y , которое обладает следующими свойствами:

1) для некоторого цикла $\mathcal Y$ цепи $\eta_t(\omega)$ положительной меры, начинающегося в y, матрица $Q(\mathcal Y)$ после перестановки столбцов и такой же перестановки строк (перенумеровки состояний из X) является блочно-диагональной, причем каждый j-й диагональный блок, соответствующий состояниям из N_t^y , содержит по крайней мере один ненулевой столбец;

2) траектории цепи $(\xi_l, P\{\cdot | \eta_{l,n}\})$, находящиеся в момент $l \leq n$ в состоянии $x' \in X$, при почти всех $\eta_{l,n}$ в момент времени τ_u^{y} , $\tau_u^{y} \leq n$, не мо-

гут находиться в разных классах разбиения $N_1^{\nu}, \ldots, N_g^{\nu}$;

3) траектории цепи $(\xi_i, P\{\cdot \mid \eta_{1,n}\})$, находящиеся в момент времени τ_u^v , $\tau_u^v \leq n$, в некотором классе N_i^v , при почти всех $\eta_{1,n}$ в момент τ_v^v , $\tau_v^v \leq n$, не могут находиться в разных классах разбиения N_i^v , ..., N_g^v .

Теорема 1 позволяет описывать возможное поведение траектории цепи $(\xi_i, P\{\cdot \mid \eta_{1,n}\})$ при почти всех $\eta_{1,n}$. Зафиксируем произвольную траекто-

рию $\eta_{1,n}$ положительной меры.

Траектории цепи $(\xi_i, P\{\cdot \mid \eta_{1,n}\})$, в начальный момент выходящие из некоторого состояния $x' \in X$, в момент τ_1^y , $\tau_1^y \le n$, все с вероятностью 1 попадают в класс $N_{j_i}^y$. Затем в момент τ_2^y , $\tau_2^y \le n$, все эти траектории с вероятностью 1 попадают в класс $N_{j_i}^y$ и так далее до момента τ_u^y , $\tau_u^y \le n$. При этом для фиксированного значения $\eta_{1,n}$ выбор индексов j_1, \ldots, j_u полностью определяется начальным состоянием x'.

Для дальнейшего изложения при $v \leq n$ введем в рассмотрение случай-

ный вектор

$$\pi_v(\eta_{l, n}, x') = (P\{\xi_v = x_i | \eta_{l, n}, \xi_l = x'\}_{i=1, ..., M}).$$

Из (1) следует, что при каждом $x' \equiv X$ случайный вектор $\pi_v(\eta_{l,n}, x')$ определен для почти всех траекторий $\eta_{l,n}$ и почти всюду $\pi_v(\eta_{l,n}, x') = \pi_v(\eta_{l,v}, x')$. Пусть $\pi_v(\eta_{l,v}, x') = \pi(\eta_{l,v}, x')$.

С помощью теоремы 1 для семейства цепей (ξ_i , $P\{\cdot \mid \eta_{i,n}\}$) можно доказать справедливость утверждений (теоремы 2—4), которые характеризуют

общие эргодические свойства этого семейства.

Теорема 2. Для того чтобы

$$M \max_{x', x'' \in X} \| \pi(\eta_{l,v}, x') - \pi(\eta_{l,v}, x'') \| \le ce^{-\alpha(v-l)},$$
 (2)

необходимо и достаточно, чтобы g = 1.

Под нормой копечномерного вектора здесь и в дальнейшем мы понимаем эвклидову норму. Через с и с будут обозначаться положительные константы, не обязательно одинаковые.

Теорема 3. Для любой пары $x', x'' \in X$ существует константа

p(x', x''), для которой

$$|M||\pi(\eta_{l,v},x')-\pi(\eta_{l,v},x'')||-p(x',x'')|| \leq ce^{-\alpha(v-l)}.$$

Пусть d — число циклических подклассов цени $\zeta_t(\omega)$, а $\varphi_v^{x'}(\bar{t})$ — характеристическая функция случайного вектора $\pi(\eta_t, v, x')$.

Теорема 4. 1) При каждом целом $r \in [0, d)$ существует функция

 $\varphi_r^{x'}(\bar{t}), \partial n \kappa \sigma r \sigma \rho \sigma \tilde{u}$

$$|\varphi_{vd+r}^{\mathbf{x}'}(\overline{t}) - \varphi_r^{\mathbf{x}'}(\overline{t})| \leq c \|\overline{t}\| e^{-av}.$$

2) Если d=1, то существует функция $\varphi(\overline{t})$, не зависящая от x', для которой

$$|\varphi_v^{x'}(\overline{t}) - \varphi(\overline{t})| \leqslant c \|\overline{t}\| e^{-\alpha v}.$$

Укажем одно из возможных следствий теоремы 4. Допустим, что задана однородная цепь Маркова $Q_t(\omega)$ со значениями в конечном пространстве стохастических матриц Q_1, \ldots, Q_L одинаковой размерности $M \times M$. Пусть переходная матрица этой цепп равна

$$\bar{P} = \begin{pmatrix} p_{11} & \cdots & p_{1L} \\ \vdots & \ddots & \ddots \\ p_{L1} & \cdots & p_{LL} \end{pmatrix}.$$

Рассмотрим стохастическую матрицу

$$P_{Q} = \begin{pmatrix} p_{11}Q_{1} & \dots & p_{1L}Q_{L} \\ \dots & \dots & \dots \\ p_{L1}Q_{1} & \dots & p_{LL}Q_{L} \end{pmatrix},$$

где блок $p_{ij}Q_i$ есть матрица размера $M \times M$, каждый элемент которой равен соответствующему элементу матрицы Q_i , умноженному на число p_{ij} .

Следствие теоремы 4. Если матрица P_Q является переходной матрицей Маркова, все $L\cdot M$ состояний которой существенны и образуют один эргодический класс c d циклическими подклассами, то для любого целого $r \in [0, d)$ каждая строка матрицы Q^{+r} $(\mathfrak{G})^{r+p} \stackrel{a}{\circ} 0 \cdots (\mathfrak{G})^{r} 0 = (\mathfrak{G})$ слабо сходится к пределу при $v \to \infty$. Если d = 1, то при $v \to \infty$ слабый предел каждой строки матрицы $Q_1^{r}(\mathfrak{G})$ не зависит от номера этой строки.

2. В предыдущей части мы изучали неоднородные цепи $(\xi_i, P\{\cdot | \eta_{i, n}\})$, число различных переходных матриц которых было конечным и не зави-

село от n.

Если $\zeta_t(\omega)$ — произвольная однородная цепь Маркова с конечным числом возможных значений, то при почтп всех $\eta_{1,n}$ цепь $(\xi_t, P\{\cdot | \eta_{1,n}\})$ в момент t управляется матрицей, зависящей от значений $\eta_{t,n}$. Укажем некоторые общие эргодические свойства семейства цепей $(\xi_t, P\{\cdot | \eta_{1,n}\})$ в этом общем случае. Для этого рассмотрим случайные векторы

$$\pi_v(\eta_{l, n}, \xi_l) = (P\{\xi_v = x_i | \eta_{l, n}, \xi_l\}_{\eta=1, ..., M}),$$

$$\pi_v(\eta_{l, n}) = (P\{\xi_v = x_i | \eta_{l, n}\}_{i=1, ..., M}).$$

Пусть

$$\pi(\eta_{l,n},\xi_l)=\pi_n(\eta_{l,n},\xi_l), \quad \pi(\eta_{l,n})=\pi_n(\eta_{l,n}).$$

Теорема 5. Если при каждом фиксированном 1

$$M\|\pi(\eta_{l,\,v},\,\xi_{l})\,-\,\pi(\eta_{l,\,v})\|\to0$$

 $npu \ v \to \infty$, to $npu \ scex \ l$

$$M\|\pi_{v}(\eta_{l, n}, \xi_{l}) - \pi_{v}(\eta_{l, n})\| \leq ce^{-\alpha(v-l)}$$
 (3)

 $npu \ v \leq n.$

Неравенства (3) для частного случая цепей $\zeta_t(\omega)$, рассмотренного

в п. 1, эквивалентны (2).

Если выполнено (3), то семейство условных цепей $(\xi_i, P\{\cdot | \eta_{i,n}\})$ является «эргодическим в среднем» и это позволяет получать общие предельные теоремы для этого семейства (центральную предельную теорему, закон больших чисел (см. (2))).

Приведем некоторые условия, накладываемые на переходную матри-

цу P цепи $\zeta_t(\omega)$, при которых выполнено (3).

Теорема 6. Если матрица Р является строго сжимающей, то выпол-

нено (3).

Теорема 7. Если все состояния цепи $\zeta_t(\omega)$ существенные, образуют один эргодический класс и существуют $x \in X$, $y, y' \in Y$ такие, что

$$P\{\xi_t = x, \eta_t = y \mid \xi_{t-1} = x', \eta_{t-1} = y'\} > 0$$

при всех $x' \in X$, то выполнено (3).

Центральный экономико-математический институт Академии наук СССР Москва Поступило 20 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Р. Л. Стратопович, Условные марковские процессы и их применение к теории оптимального управления, М., 1966. ² З. И. Бежаева, Теория вероятностей и ее применения, 14, в. 3 (1971).