УДК 550.34.013

ГЕОФИЗИКА

Э. Н. БЕССОНОВА, Г. А. СИТНИКОВА, В. М. ФИШМАН

НОВЫЙ МЕТОД ИНТЕРПРЕТАЦИИ ГОДОГРАФОВ РЕФРАГИРОВАННЫХ ВОЛН (МЕТОД τ)

(Представлено академиком М. А. Садовским 4 XI 1972)

Здесь рассматривается задача об определении сейсмического разреза по продолжительностям пробега объемной волны T_i , заданным на дискретных расстояниях X_i , $i=1,\ 2,\ldots,\ n$. Разрез в этом случае определяется неоднозначно и задача формулируется так. Имеется набор T_i , X_i , заданных с ошибками. Некоторые X_i могут быть равны между собой; соответствующие T_i будут относиться к разным ветвям годографа. Требуется построить область, содержащую все такие разрезы, для которых годографы согласуются с заданными точками $T_i(X_i)$. Априорные предположения следующие: скорость волны зависит только от глубины; волна распространяется по законам геометрической сейсмики; среда имеет конечное число волноводов; скорость в волноводах ограничена снизу некоторыми константами. При первых трех предположениях М. Л. Гервер и В. М. Маркушевич $\binom{1}{i}$ получили решение обратной задачи для случая, когда годограф задан точно и непрерывно. Мы будем опираться на это решение.

Используем свойства исследованной в $\binom{1}{i}$ функции $\tau(p) = \frac{1}{2} [T(p) - pX(p)]$; здесь p — лучевой параметр, равный производной годографа по расстоянию. Решение строится в два этапа. Сначала по $T_i(X_i)$ строится полоса, содержащая $\tau(p)$; при этом используется то, что $\tau(p)$ есть особое решение уравнения Клеро с годографом T(X) в качестве свободного члена. Затем по этой полосе находится на плоскости (Y, V) область, содержащая все разрезы, удовлетворяющие наблюдаемому годографу; конкрет-

ные разрезы не разыскиваются.

1. Переход от $T_i(X_i)$ к $\tau(p)$. Если бы данные $T_i(X_i)$ не содержали ошибок и были разбиты на группы, соответствующие отдельным ветвям, то задача построения $\tau(p)$ по $T_i(X_i)$ свелась бы к задаче восстановления выпуклой кривой по ограниченному набору ее касательных, ибо график $\tau(p)$ — выпуклый вверх для прямого хода годографа и выпуклый вниз для обратного. В п.2 мы укажем два алгоритма решения этой задачи. Но такое разбиение не всегда возможно, так как дискретность данных и ограниченная разрешающая способность записи не позволяют выделять небольшие петли годографа.

Дадим определение петли. Пусть годограф на некотором интервале расстояний задан функцией T(X). Построим графики однозначных функций $T(X) = \inf_X T(X)$ и $\overline{T}(X) = \sup_X T(X)$ для прямого и обратного хода соответственно. Очевидно, что T(X) есть годограф первых вступлений. Тогда петлей мы будем называть любое связное подмножество графика T(X), не принадлежащее T(X) или $\overline{T}(X)$.

Чтобы учесть возможность пропуска петли в случае реальных данных, заключим наблюденные точки годографа в полосу на плоскости (T, X),

заведомо содержащую все вступления и ограниченную снизу $T_*(X)$, а сверху $T^*(X)$. T_* и T^* должны удовлетворять тем же условиям, что и годограф без петель: их наклон должен меняться монотонно от \bar{p} до p. Здесь \bar{p} и p— априорные оценки максимального и минимального наклона истинного годографа на изучаемом интервале X. Если для получения этих оценок нет необходимой информации, то приходится взять $\bar{p}=1$, p=0.

Будем рассматривать T_* и T^* как годографы. Построим для них функции $\tau_* = T_* - pX(p)$ и $\tau^* = T^* - pX(p)$. Практически удобнее задавать $T_*(X)$ и $T^*(X)$ в дискретном наборе точек. Тогда, поскольку T_* и T^* вы-

пуклы, т. и т. можно получить по способу, описанному в п.2.

Можно доказать такое утверждение: графики $\tau(p)$, соответствующие всем годографам, проведенным через наблюденные точки $T_i(X_i)$ будут заключены на плоскости (τ, p) внутри полосы $\tau_i(p) \leq \tau(p) \leq \tau^*(p)$. Эта полоса может оказаться чересчур широкой. Она сузится, если можно заранее разделить $T_i(X_i)$ на крупные участки прямого и обратного хода, хотя бы и осложненные возможными петлями.

2. Восстановление выпуклой кривой по дискретному набору ее касательных. Пусть задан многоугольник с числом сторон, не меньшим 5, описанный вокруг некой выпуклой кривой. Очевидно, что эта кривая заключена между исходным многоугольником и внутренним, полученным при пересечении прямых, соединяющих вершины исходного через одну. Отсюда ясно, как можно найти пределы для выпуклого участка кривой $\tau(p)$. Исходный многоугольник будет образован прямыми $l_i = T_i - pX_i$, $0 \le p \le 1$.

Если кривая — маловыпуклая функция, то описанная процедура неустойчива, так как она связана с нахождением точки пересечения прямых с близкими наклонами. Для маловыпуклых функций предлагается другая процедура. Расположим X_i по возрастанию. Рассмотрим $l_i(p_0)$, где p_0 — некоторое фиксированное значение p; для $l_i(p_0)$ возможно три случая поведения. С увеличением i $l_i(p_0)$ может монотонно убывать, монотонно возрастать или иметь экстремум при некотором $i=i^*$ (максимум для выпуклой вниз $\tau(p)$ и минимум для выпуклой вверх). Пусть рассматриваемый участок годографа соответствует прямому ходу. Тогда можно утверждать следующее: в первом случае p_0 слишком велико, во втором слишком мало и, следовательно, не встречается на данном участке годографа. В третьем случае можно утверждать, что $\tau(p_0) \geqslant l_i^*(p_0)$. Для обратного хода годографа третий случай означает, что $\tau(p_0)$

Вторую границу для $\tau(p_0)$ можно найти, разлагая $\tau(p)$ в ряд Тейлора вблизи p^* , для которого l_{i^*} — касательная к τ в точке p^* . Так, для выпук-

лой вниз т(р) имеем

 $\tau(p_0) \leq l_{i^*}(p_0) + \frac{1}{2} \max X'(p) \cdot \max \{(p_0 - p_0)^2, (p_0 - \bar{p}_0)^2\}, p \in (\bar{p}_0 - p_0); p_0 - \text{нижняя, а } \bar{p}_0 - \text{верхняя грань тех значений } p, при которых <math>\bar{l}_i(p)$ максимально для всех $l_i(p)$.

Оценки на $\tau(p)$ между двумя соседними полосами, которые соответствуют разным ветвям годографа, а также оценки на некоторые параметры волноводов могут быть получены с помощью «метода параллелограммов» (см. $\binom{3}{4}$).

3. Переход от $\tau(p)$ к Y(p). Y(p) — это самая глубокая точка на луче с параметром p, причем функция Y(p) вне волноводов совпадает со скоростным разрезом (см. $\binom{1}{2}$). Чтобы построить оценки на Y(p), исходя из оценок на $\tau(p)$, мы переходим к $\overline{Y}(a,b)$ — среднему значению Y(p) на интервале (a,b), строим оценки на это среднее значение по оценкам на $\tau(p)$, а затем, учитывая монотонность функции Y(p), от оценок на $\overline{Y}(a,b)$ переходим к оценкам на Y(p).

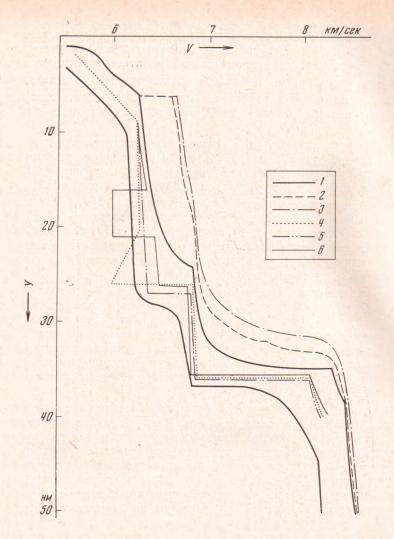


Рис. 1. Область, содержащая все допустимые скоростные разрезы: 1 — верхняя граница области; 2 — нижняя граница области при отсутствии волноводов; 3, 4 — нижняя граница области вне волноводов, минимальная скорость в волноводах 6 (3), 5,5 км/сек (4); 5, 6 — разрезы, годографы которых совпадают с наблюденным с точностью до 0,1 сек

Можно показать, что при отсутствии волноводов

где

 τ^* и τ_* — верхняя и нижняя оценки на $\tau(p)$ соответственно,

$$eta(q,\,a,\,b) = \left\{ egin{array}{cccc} rac{a}{q\,\,\sqrt{q^2-a^2}} & ext{для}\,\,a \leqslant q \leqslant b, \ rac{a}{q\,\,\sqrt{q^2-a^2}} & rac{b}{q\,\,\sqrt{q^2-b^2}} & ext{для}\,\,b < q \leqslant 1. \end{array}
ight.$$

При наличии водноводог

$$\Phi_{\mathfrak{l}}(a, b) - \overline{\psi}(a, b) \leqslant \overline{Y}(a, b) \leqslant \overline{\Phi}_{\mathfrak{l}}(a, b) - \underline{\psi}(a, b),$$

где

$$\begin{split} \overline{\psi}\left(a,\,b\right) &= \sum_{\substack{i \\ q_i > a}} \frac{\sigma_i^{\max}}{\sqrt{\frac{(q_i^{\min})^2 - \left(\frac{a+b}{2}\right)^2}{\left(1 - \frac{\arctan\theta_i^{\max}}{\theta_i^{\max}}\right)}},\\ \psi\left(a,\,b\right) &= \sum_{\substack{i \\ q_i > a}} \frac{\sigma_i^{\min}}{\sqrt{\frac{(q_i^{\max})^2 - \left(\frac{a+b}{2}\right)^2}{\left(1 - \frac{\arctan\theta_i^{\min}}{\theta_i^{\min}}\right)}}; \end{split}$$

 (q_i^{\min}, q_i^{\max}) — интервал p, на котором предполагается i-й волновод; $(\sigma_{i}^{\min}, \sigma_{i}^{\max})$ — оценки на скачок функции т, связанный с i-м волноводом;

$$\theta_{i}^{\max} = \sqrt{\frac{(u_{i}^{\max})^{2} - (q_{i}^{\min})^{2}}{(q_{i}^{\min})^{2} - \left(\frac{a+b}{2}\right)^{2}}}, \quad u_{i}^{\max} = \frac{1}{V_{i}};$$

 V_i — ограничение снизу на скорость в i-м волноводе,

$$\theta_i^{\min} = \frac{\sigma_i^{\min}}{h_i^{\max} \sqrt{(q_i^{\max})^2 - \left(\frac{a+b}{2}\right)^2}};$$

 h_i^{\max} — ширина самого широкого прямоугольного волновода, соответствую-

щего данному скачку σ_i (см. $\binom{1}{2}$).

Приведенная теория была опробована на годографе наблюдений ГСЗ в Туркмении (см. (5,6)). С помощью ЭВМ оценки на $\tau(p)$ были переведены в область возможных разрезов, представленную на рис. 1. Полученная область дает хорошее представление об изменении скорости с глубиной внутри земной коры и позволяет довольно точно определить ее параметры (например, мощность коры). Результаты хорошо согласуются с имеющимися представлениями о строении земной коры в рассматриваемом районе, во многом дополняя и уточняя их.

Вместе с тем рисунок показывает, что имевшиеся в нашем распоряжении данные позволяют определять скоростной разрез лишь с существенной неоднозначностью. В частности, вопрос о существовании волноводов остается открытым.

Основное достоинство изложенного метода решения обратной задачи надежность и независимость от большого числа субъективных предположений, особенно от интерполяции годографов, постулирования петель, зон тени и т. л.

Институт физики Земли им. О. Ю. Шмидта Академии наук СССР Москва

Поступило 26 IX 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 М. Л. Гервер, В. М. Маркушевич, Сборн. Вычислительная сейсмология, в. 3, «Наука», 1967. 2 М. Л. Гервер, В. М. Маркушевич, Сборн. Вычислительная сейсмология, в. 4, «Наука», 1968. 3 V. I. Keilis-Borok, Proc. of the Intern. School of Physics «Enrico Fermi», Course L; Mantle and Core in Planetary Physics, 1971. 4 Э. Н. Бессонова, Г. А. Ситникова, В. М. Фишман, Сборн. Теоретическая и вычислительная геофизика, «Наука», 1972. 5 В. З. Рябой Сов. геол., № 5 (1966). 6 В. З. Рябой, Физика Земли, № 3 (1966).