УДК 513.83

MATEMATUKA

С. БОГАТЫЙ

О ТЕОРЕМЕ ВИЕТОРИСА ДЛЯ ШЕЙПОВ, ОБРАТНЫХ ПРЕДЕЛАХ И ОДНОЙ ЗАДАЧЕ Ю. М. СМИРНОВА

(Представлено академиком П. С. Александровым 27 XI 1972)

А. Хорошо известно, что если пространство X обладает сложной локальной структурой, то теория гомотопий может ничего не говорить о его глобальных свойствах. Так, существует связный компакт У, который не содержит ни одной дуги. Если P — связный полиэдр, то существуют только тривиальные отображения P в Y, т. е. отображений P в Y очень мало, чтобы сделать какое-нибудь заключение о строении пространства Ү. В (1) Борсук фактически заменяет компакт X на набор его окрестностей в гильбертовом кирпиче, которые обладают хорошими локальными свойствами. Этот же прием замены компакта Х пространствами простой локальной структуры (в которых теория гомотопий содержательна) лежит в основе ANR-систем Мардешича и Сегала (2). Оказывается, что, в то время как гомотопические группы не коммутируют с взятием обратного предела (это видпо на примере континуума Y, который является пересечением убывающей последовательности связных и локально связных компактов), т. е. гомотопические группы предела не равны пределу гомотопических групп, шейповые группы ((³), стр. 122), которые отвлекаются от локальной структуры и учитывают лишь глобальные свойства пространств, непрерывны.

Пусть Z и X — произвольные компакты. Через [Z,X] мы будем обозначать множество классов гомотопных отображений компакта Z в X. Через [Z,X] будет обозначаться множество классов фундаментальных (аппроксимативных) последовательностей (3) из Z в X, или, что то же самое, мпожество шейновых отображений Z в X (4). Рассмотрим произвольную обратную последовательность компактов $X = \{X_n, p_n, r', N\}$.

Согласно (5) отображение $p_{n,n'}\colon X_{n'}\to X_n$ порождает отображение $p_{n,n'}^*\colon [Z,X_{n'}]\to [Z,X_n]\cdot p_{n,n'}\cdot p_{n,n'}=p_{n,n'}\circ p_{n',n''}$ при $n\leqslant n'\leqslant n''$, поэтому $p_{n,n'}^*=p_{n,n'}^*\circ p_{n',n''}^*$. Таким образом, $X^{\#}=\{[Z,X_n],p_{n,n'}^{\#},N\}$ является обратной последовательностью множеств. Отметим, что если $Z=S^k$, а $p_{n,n'}$ сохраняет отмеченную точку, то $X^{\#}$ является обратной последовательностью групп $\pi_h(X_n)$. Пусть $\{X,p_n\}$ — обратный предел последовательности X. Согласно (5), непрерывное отображение $p_n\colon X\to X_n$ порождает отображение $p_n^{\#}\colon [Z,X]\to [Z,X_n]$. При этом $p_n=p_{n,n'}\circ p_{n'}$, поэтому $p_n^{\#}=p_{n,n'}^{\#}\circ p_{n'}^{\#}$, т. е. отображения $p_n^{\#}$ порождают отображение $p^{\#}\colon [Z,X]\to 1$ Inv 1 Inv 1

Теорема 1. Если $\{X, p_n\}$ является обратным пределом последовательности $X = \{X_n, p_{n,n'}, N\}$, то $\{[Z, X], p_n^*\}$ является пределом последовательности $X^* = \{[Z, X_n], p_{n,n'}^*, N\}$. Другими словами, p^* является изоморфизмом $(\overline{r}, e, e, e, e)$ и гомоморфизмом).

Отсюда следует, что изучение произвольного компакта X распадается на два этапа: 1) изучение «хороших» X_n и 2) изучение обратных последовательностей.

Всякое отображение $f: Z \to X$ порождает некоторый фундаментальный класс [f] ((3), стр. 8), или, что то же самое, шейповое отображение (2). Причем, если два отображения f и g гомотопны, то [f] = [g], т. е. существует естественное отображение $S: [Z,X] \to [Z,X]$. В (3) доказано, что если X обладает простой локальной структурой $(X \in ANR)$, то это отображение S является взаимно однозначным и на для всех компактов Z, т. е. если $X \in ANR$, то [Z,X] = [Z,X]. Существуют примеры ((3), стр. 11), когда $[Z,X] \neq [Z,X]$ (иначе теория шейпов совпадала бы с теорией гомотопий). Ясно, что в этом случае $X \notin ANR$. Оказывается, что если от X потребовать простоту локальной структуры другого рода, то равенство [Z,X] = [Z,X] сохранится для некоторого класса компактов Z.

 $\dim Z \leq m$ отображение S является и взаимно однозначным.

Эта теорема является аналогом теоремы Мардешича о связи сингулярных групп гомологий с группами гомологий Александрова — Чеха (6). Весь этот параграф говорит, что фундаментальные группы, построенные Борсуком совсем с других позиций, являются как бы «группами гомотопий Александрова — Чеха». Отметим, что если исходить из концепций работы (2), то эта аналогия является более естественной.

Каждый компакт можно представить в виде пересечения убывающей последовательности ANR-пространств, поэтому из теорем 1, 2 (7), теоре-

ма 11) и некоторых дополнительных построений следует

Теорема 3. Если $f: X \to Y - \tau$ акое отображение компакта X на компакт Y, что $f^{-1}(y) \in LC^m$ и C^m для всех $y \in Y$, то $f^*: [Z, X] \to [Z, Y]$ является изоморфизмом для компактов Z размерности $\leq m$ и эпиморфизмом

 $(\tau, e, \mu a)$ для компактов размерности $\leq m + 1$.

Эта теорема по своему духу примыкает к теореме Виеториса для гомологий (8), но для полноты аналогии хотелось бы условие $f^{-1}(y) \subseteq LC^m$ и C^m , которое не является шейпово инвариантным, заменить на условие $[S^h, f^{-1}(y)] = \{0\}$ при $k \le m$. Если на множества $f^{-1}(y)$ наложить некое дополнительное условие (которое является шейпово инвариантным), то теорема останется справедливой. Но это условие формулируется сложно, а при его упрощении возникает довольно жесткое условие — подвижность, поэтому автор не считает целесообразным приводить его здесь. Однако на множества $f^{-1}(y)$ можно наложить некоторое простое шейповое условие $(AC^m \ (^9))$ так, что будут верны близкие теоремы.

Теорема 4. Пусть дано отображение $f: X \to Y$, что $X \in LC^m$ и $f^{-1}(y) \in AC^m$ для всех $y \in Y$. Тогда $Y \in LC^m$ и $f_{\pm}: [Z, X] \to [Z, Y]$ — изо-

морфизм для всех компактов Z размерности ≤m.

Для иллюстрации того, что условие $X \subseteq AC^m$ не является очень жестким, отметим, что из $X \subseteq LC^{m-1}$ и C^m следует $X \subseteq AC^m$, из $X \subseteq FAR$ (10) следует $X \subseteq AC^m$. Кроме того AC^m -пространства инвариантны относительно взятия обратного предела (теорема 9).

Из теоремы 4 вытекают следующие две теоремы.

Теорема 5. Пусть дано отображение $f: X \to Y$, что $f^{-1}(y) \in AC^m$ для всех $y \in Y$.

Tогда $f^{\#}\colon [Z,X] o [Z,Y]$ изоморфизм для всех компактов Z размер-

ности ≤т

Теорема 6. Пусть бано отображение $f: X \to Y$ конечномерного компакта X на конечномерный компакт Y, что $f^{-1}(y) \equiv FAR$ для всех $y \subseteq Y$.

Tогда $\mathrm{Sh} X = \mathrm{Sh} Y$, τ . e. nространства X u Y определяют один u τ σ же шейповый класс.

Эта теорема является частичным ответом на вопрос Борсука, постав-

денный на симпозиуме в Херцег-Нови (11).

Так как любой компакт X является обратным пределом последовательности $X = \{X_n, p_n, n', N\}$ из компактных ANR-пространств X_n , то из теоре-

мы 1 и совпадения множеств $[Z, X_n]$ и $[Z, X_n]$ для ANR-пространств X_n следует, что если x_0 — точка, X, то $\pi_k(\overline{X}, x_0) = \operatorname{Inv} \operatorname{lim} \{\pi_k(X_n, x_0^n)\}$, где $x_0^n = p_n(x_0)$. Кроме того, так как для \overline{ANR} -пространств множество фундаментальных классов естественным образом совпадает с множеством гомотопных отображений и с множеством аппроксимативных классов, то для любых компактов Z и X множества фундаментальных и аппроксимативных классов совпадают и равны множеству $[Z, X] = \operatorname{Inv} \operatorname{lim} \{[Z, X_n], (p_{n_n,n'})_{\#}, N\}$, где отображение $(p_{n_n,n'})_{\#} \colon [Z, X_{n'}] \to [Z, X_n]$ индуцировано отображением $p_{n_n,n'} \colon X_{n'} \to X_n$

Б. Известно, что свойства AR и ANR не сохраняются при взятии обратного предела. Это видно хотя бы из того, что каждое FAR-пространство является пересечением убывающей последовательности AR-пространств (12), а произвольный компакт X можно получить пересечением убывающей последовательности ANR-пространств. Оказывается, что класс FAR-

пространств инвариантен относительно взятия обратного предела.

Теорем а 7. Если компакт X является обратным пределом компактов из класса K, то пространство X аппроксимируется пространствами класса K (13).

Отсюда и из (13) вытекают

Теорема 8. Éсли компакт X является обратным пределом FAR-пространств, то $X \subseteq FAR$.

Следствие 1. Если $X \in ANR$ и X является обратным пределом FAR-

пространств, то $X \in AR$.

Следствие 2. Если компакт X является аппроксимационным абсолютным окрестностным ретрактом в смысле Клаппа (14) или Ногуши (15) и X является обратным пределом FAR-пространств, то X является аппроксимационным абсолютным ретрактом.

Теорема 9. Если компакт X является обратным пределом AC^{m} -про-

странств, то $X \subseteq AC^m$.

В. Хорошо известна теорема П. С. Александрова, характеризующая n-мерные пространства возможностью продолжения отображений в n-мерную сферу S^n (16). Ю. М. Смирновым была поставлена задача характеризации локально конечномерных пространств. Ю. Лисица дал характеристику таких пространств с помощью пространства $Y \in LC^{\infty}$ и C^{∞} , но вопрос о возможности охарактеризовать локально конечномерные пространства с помощью локально стягиваемого пространства оставался открытым (17). Оказывается, что такой характеристики с помощью локально стягиваемых пространств дать нельзя. А именно, пусть X — компактный букет n-мерных кубов I^n , где $n=1,2,\ldots X$ не локально конечномерно, но если дано множество A, замкнутое в X, и отображение $f\colon A\to Y$, где $Y\in LC$ п C^{∞} , то, как следует из теоремы 10, всегда существует продолжение $F\colon X\to Y$.

Пусть X и Y — метрические (если не оговорено противное) пространства. Через X' обозначим множество точек не локальной конечномерности, \mathbf{T} . е. $X' = Z \setminus X_1$, где $X_1 = \{x \colon x \in X \text{ и существует } \text{ окрестность } U_x$, что $\dim \overline{U}_x < \infty\}$.

Tеорема 10. Eсли $\dim X' < \infty$ и дано отображение $f: A \to Y$, где A

замкнуто в X, а $Y \in LC$ и C^{∞} , то существует продолжение $F \colon X \to Y$.

Теорема 11. Если $\dim X' < \infty$ и дано отображение $f: A \to Y$, где A замкнуто в X, а $Y \in LC$, то существует продолжение $F: OA \to Y$ на некоторую окрестность OA множества A в X.

Замечание 1. Теоремы 10 и 11 верны для более широкого класса пространств X, например для совершенно нормальных паракомпактов, а если Y сепарабельно, то от X можно требовать лишь совершенную нормальность

Замечание 2. В теоремах 10 и 11 условие dim $X' < \infty$ можно ослабить, считая X локально конечномерным в таком смысле, т. е. требуя су-

ществования у каждой точки $x \in X$ такой окрестности Ox,

 $\dim (\bar{O}x)' < \infty$.

Мы будем писать $Y \in LC(N)$, если для всякой точки $y \in Y$ и всякой ее окрестности U_y найдется меньшая окрестность V_y , что любое отображение конечномерного компакта в V_y гомотопно нулю в U_y .

Teopeмa 12. Если dim $X' < \infty$, X - компактное пространство и даноотображение $f: A \to Y$, где A замкнуто в X, а $Y \in LC(N)$ и C^{∞} , то существует продолжение $F: X \to Y$.

Теорема 13. Если dim $X' < \infty$, X — компактное пространство и дано отображение $f: A \to Y$, где A замкнуто в X, а $Y \in LC(N)$, то существует продолжение $F\colon OA o Y$ на некоторую окрестность OA множества A в X.

Следствие 3. Если X — компактное пространство, $\dim X' < \infty$ и $X \in$

 $\subseteq LC(N)$ if C^{∞} , to $X \subseteq LC$ if C.

Следствие 4. Если X — компактное пространство, $\dim X' < \infty$ и $X \in LC(N)$, to $X \in LC$.

Теорема 14. Если X' — конечное множество, $X \in LC^{\infty}$, а в точках

множества X' пространство X локально стягиваемо, то $X \in ANR$.

Замечание 3. Условие локальной стягиваемости пространства Х в точках множества X' существенно, потому что существует компакт $X \in LC^{\infty}$, у которого множество X' состоит из одной точки, но которое не является ANR-пространством. В случае, когда множество X' пусто, получается теорема Лисицы (17).

В заключение автор пользуется возможностью выразить благодарность

проф. Ю. М. Смирнову за заботу и помощь.

Примечание при корректуре. Автору стало известно, что теорему 6 получил независимо Шер.

Московский государственный университет им. М. В. Ломоносова

Поступило 15 XI 1972

цитированная литература

¹ K. Borsuk, Fund. Math., 62, 223 (1968). ² S. Mardesić, J. Segal, Fund. Math., 72, 41 (1971). ³ K. Borsuk, Theory of Shape, Aarhus., 1971. ⁴ S. Mardesić, Glasnik Mat., 6, 153 (1971). ⁵ S. Godlewski, W. Holsztinsky, Bull. Acad. Polon. Sci., Ser. Math., Astr., Phys., 17, 373 (1969). ⁶ S. Mardesić, Michig. Math. J., 6, 151 (1959). ⁷ S. Smale, Proc. Am. Math. Soc., 8, 604 (1957). ⁶ L. Vietoris, Math. Ann., 97, 454 (1927). ⁹ K. Borsuk, Fund. Math., 67, 265 (1970). ¹⁰ K. Borsuk, Fund. Math., 64, 55 (1969). ¹¹ K. Borsuk, Proc. Intern. Symp. Topology and its Applications, Herceg-Novi, 1968, Beograd, 1969. ¹² D. M. Hyman, Fund. Math., 64, 91 (1969). ¹³ C. A. Borathi, VI Bcecoman. Tomor. Rohdep. Teauch, Tomuch, 1972. ¹⁴ H. Michael, H. Clapp, Fund. Math., 70, 117 (1971). ¹⁵ H. Noguchi, Kodai Math. Seminar Reports, 1, 20 (1953). ¹⁶ P. Alexandroff, Proc. Roy. Soc. A., 189, 11 (1947). ¹⁷ HO. Juchua, JAH, 205, 777 (1972).