УДК 550.4:551.263.037:553.41(571.65)

ГЕОХИМИЯ

м. в. филимонов

ОСОБЕННОСТИ ГЕОХИМИИ РУДОНОСНЫХ ПЛУТОНИЧЕСКИХ И ВУЛКАНИЧЕСКИХ ФОРМАЦИЙ МЕЖДУРЕЧЬЯ ТАНЮРЕР — ТНЕКВЕЕМ (ОХОТСКО-ЧУКОТСКИЙ ВУЛКАНОГЕННЫЙ ПОЯС)

(Представлено академиком Н. А. Шило 15 V 1972)

Магматические образования междуречья Танюрер — Твеквеем, расположенного в Восточно-Чукотской вулканической зоне Охотско-Чукотского вулканогенного пояса, являются представителями плутонических
и вулканических формаций, характерных (²) для всего пояса. Раннемеловые габброиды (габбровая формация) слагают мелкие тела, а гранитоиды (диориты, гранодиориты, плагиограниты, граниты) охотского типа
(гранодиорит-плагиогранитная формация) — крупные плутоны площадью
до 3 тыс. км². Вулканиты позднего мела (липаритовая формация) слагают толщи липаритов (липариты, дациты, их туфы, игнимбриты; липаритовая субформация), андезитов (андезиты, дациты, их туфы). Комагматы
позднемеловых вулканитов представлены субвулканическими телами
гранодиоритов, дайками гранит-порфиров, липаритов, дацигов, андезитов. Палеогеновые вулканиты (трахибазальтовая формация) представлены базальтами, андезито-базальтами, их туфами, трахиандезитами,

трахилипаритами, трахитами, комендитами.

В парагенетической связи с раннемеловыми диоритами и гранодионаходятся незначительные рудопроявления золота (зоны пиритизированных пород), а с аляскитовыми гранитами в грейзенах молибдена. Основная золотоносность района связана с позднемеловой липаритовой формацией; в пространственной связи с субвулканическими телами липаритов, дацитов обнаружены многочисленные близповерхностные (эпитермальные) золото-серебряные рудопроявления, приуроченные к кварцевым и адулярово-кварцевым жилам. Среди палеогеновых образований установлены рудопроявления золота и серебра, пространственно тяготеющие к субвулканическим телам трахитов и комендитов. Распределение редких элементов в породах плутонических и вулканических формаций района приведено в табл. 1. В породах габбровой формаза исключением ции большинство изученных редких элементов, элементов группы железа, присутствует в количествах. близких к их средним содержаниям в основных породах по А. П. Виноградову Для никеля, кобальта, хрома и ванадия средние содержания в габбро в 2-3 раза ниже нормы. В породах гранодиорит-плагиогранитной формации дифференциация в отношении редких элементов проявляется нанболее отчетливо в отношении калия, бериллия, стронция, цинка и ванадия. Отмечается тенденция последовательного роста содержаний золота от диоритов к гранодиоритам и гранитам. Однако в малокальциевых гранитах данной формации среднее содержание золота остается ниже нормы. Все породы гранодиорит-плагиогранитной формации сравнению со среднемировыми типами пород, сходных по основности, характеризуются дефицитом калия и связанных с ним геохимически рубидия и свинца. В малокальциевых гранитах, по сравнению с плагио-

Эле- мент	Раннемеловые формации				Позднемеловые формации				
	габбро- вая	гранодиорит-плагио- гранитная			позднемеловая липаритовая			палеогеновая трахибазальтовая	
	габбро	дио- риты	гранодиори- ты,плагио- граниты	грани-	липа- риты	граниты	андезиты	базальты	липариты
K Na	0,57 1,63	1,43 3,32	2,2 3,18	3,41 2,85	3,25 2,36	3,36	1,93	0,86	3,39
Li	17	20	21	16	21	$^{2,77}_{16}$	3,20	2,84 15,5	2,48
Rb	28	31	33	101	69	78	48,5	22	_
Be Sr	1,3	2,7 450	3,1 250	5,7 160	275	100	3,2 670	3,0	$\frac{6}{255}$
Ba	430	600	900	900	800	600	650	720	850
Pb	2	6	8	10	5	20	4	2,5	5,1
Zn	105	80	60	20	50	20	70	90	102
Su	1,3	1,8 1,8	$\frac{2}{2}$	2,5	1,7	3	2	1,4	3,2
Mo V	1,5	1,8	420	2,5	1,9	1,3	2,2	1,5	2,3
Ni	160 53	150 25	120 18	20	98	50 20	82 16	100	47 13
Co	20	12	10	Сл.	10	2,5	10	15	10
As	36	20	9	10	10	2,5	15	25	12
Cu		3,5	3,6	3,6	4,8	5	5	5	12
Au	0,0025	0.0011	0,0013	0.0017	0,0034		0,0026	0,0077	0,0039
Hg	0,042	0,038	0,035		0,03		0,05	0,04	

^{*} Содержание К и4Na - 1%, остальных - µг/г.

гранитами, наблюдается резкое увеличение содержания рубидия и бериллия. Породы вулканической и плутонической фаций липаритовой формации позднего меда характеризуются одинаковыми или близкими содержаниями калия, рубидия, бериллия, бария, никеля, меди и мышьяка. В интрузивной фации, по сравнению с вулканической, отмечаются повышенные содержания свинца, олова и молибдена, пониженные - лития, золота и стронция. Андезиты в составе липаритовой формации отличаются от среднего тихоокеанского андезита по Тейлору (3) повышенными в пва-три раза содержаниями литофильных элементов, олова, молибдена, лития, стронция и бария, при пониженных содержаниях халькофильных — свинца и меди. Базальты в составе палеогеновой трахибазальтовой формации отличаются от среднего континентального базальта по Тейлору, близкого к ним по основности, пониженными содержаниями элементов групп железа, особенно никеля (в 10 раз) и меди (в 4 раза). По сравнению с нижнемеловыми интрузивными формациями во всех породах позднемеловой липаритовой и палеогеновой трахибазальтовой формаций отмечается увеличение содержаний золота, ртути и мышьяка.

> Поступило 15 V 1972

цитированная литература

¹ А. П. Виноградов, Геохимия, № 7 (1962). ² Е. К. Устиев, Изв. АН СССР, сер. геол., № 3 (1965). ³ S. R. Taylor, Geochemistry of Andesites. Origin and Distribution of the Elements, 1968.