УДК 542.6 ХИМИЯ

т. н. дымова, ю. м. дергачев

РАСТВОРИМОСТЬ ТЕТРАГИДРИДОГАЛЛАТА ЦЕЗИЯ CsGaH₄ В ДИГЛИМЕ

(Представлено академиком И.В. Тананаевым 8 II 1973)

Гидридные комплексы галлия со щелочными металлами являются новыми, практически не изученными соединениями. В ряду гидридогаллатов $MGaH_4$ первым был получен (4 , 2) моноэфират гидридогаллата лития по реакции

 $4\text{LiH} + \text{GaCl}_3 \xrightarrow{\text{Et}_2\text{O}} \text{LiGaH}_4 + 3\text{LiCl}.$

Недавно обменными реакциями в растворе между LiGaH₄ и простыми гидридами МН синтезированы гидридогаллаты MGaH₄ (M=Na-Cs) (3). Нами получены соединения типа MGaH₄ (M=K-Cs) и M₃GaH₆

 $(M={
m Na-Cs})$ прямым взаимодействием элементов в расплаве $M-{
m Ga}$ (4) по реакциям ${
m Taf}_{
m Int}$ да 1

$$M + Ga + 2H_2 \xrightarrow{P, t} MGaH_4;$$

 $3M + Ga + 3H_2 \xrightarrow{P, t} M_3GaH_6.$

Из твердой массы послереакционных веществ чистый гидридогаллат цезия CsGaH₄ выделен экстракцией диглимом (диметиловым эфиром диэтиленгликоля), который является единственным изРезультаты анализа твердых фаз, вытеленных из диглимовых растворов $CsGaH_4$

Исходная кон- центрация раствора СъGaH ₄ , мол.%	Т-ра выде- ления кристал- лов, °С	Содержание галлия в осад- ке, %	Мольное от- ношение CsGaH₄: ДГ
8,59 8,59 8,59 7,68 7,68 7,68 8,52	-50 -50 -50 22 22 22 105	9,58 8,95 9,12 13,56 13,33 13,09 33,37	1:3,91 1:4,29 1:4,17 1:1,85 1:2,14 1:2,44 1:0,02

вестным растворителем гидридогаллатов тяжелых щелочных металлов. Исходный $CsGaH_4$ содержал $99\pm0.5\%$ основного вещества. Диглим $(\Pi\Gamma)$ для разложения перекисей и воды кипятили с гранулированным едким кали и перегоняли над металлическим натрием, отбирая фракцию при 162° . Очищенный растворитель хранили в закрытой колбе над натриевой проволокой в атмосфере сухого аргона. При температуре выше 0° система $CsGaH_4 - \Pi\Gamma$ изучена методом изотермической растворимости, а в интервале $-65.5-40^\circ$ визуально-политермическим и дифференциально-термическим методами. Определение концентраций раствора при изотермическом растворении показало постижение равновесия в течение 1.5 час.

Установлена также способность CsGaH₄ давать пересыщенные растворы с диглимом, изменение концентрации которых до состава насыщенного

раствора протекает очень медленно.

Температуру исчезновения последнего кристалла в растворе при его нагревании от точки замерзания определяли на приборе, состоящем из сосуда Дьюара с магнитной мешалкой, перемещаемой в вертикальном направлении под действием переменного магнитного поля, возбуждаемого током в индукционной катушке. Точки линии солидуса определяли дифференциально-термическим методом. При этом сосуды Степанова с раствором устанавливали в гнездах охлаждаемого жидким азотом медного блока,

куда снизу вводили простую и дифференциальную термопары (⁵). Фазовые превращения, протекающие при нагревании отвердевшего раствора, регистрировали на пирометре Курнакова. Концентрацию растворов устанавливали по галлию измерением оптической плотности на спектрофотометре СФ-4A с индикатором ксиленоловым оранжевым. Состав находящихся в равновесии с жидкостью твердых фаз приведен в табл. 1.

Обсуждение результатов. Диаграмма растворимости $CsGaH_4$ в диглиме состоит из четырех ветвей (рис. 1). Первая ветвь отвечает, повидимому, кристаллизации чистого диглима, а ветвь AB-кристаллизации

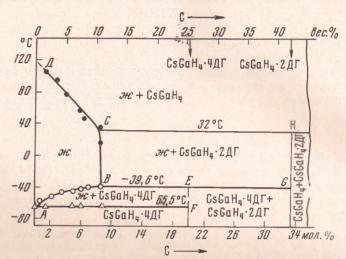


Рис. 1. Диаграмма растворимости CsGaH₄ — диглим

тетрасольвата CsGaH₄·4ДГ, инконгруэнтно плавящегося при —39,6° с превращением в дисольват CsGaA₄·2ДГ. Соединение CsGaH₄·2ДГ кристаллизуется в области ВСНС и выше 32° переходит в несольватированный гидридогаллат цезия с отщеплением двух молекул диглима. Растворимость CsGaH₄ уменьшается с повышением температуры и при 120° достигает значений, близких к нулю.

Полученная диаграмма $CsGaH_4 - Д\Gamma$ отражает химическое взаимодействие гидридогаллата цезия с диглимом и по характеру изменения растворимости аналогична системам $Na_2SO_4 - H_2O$ (6-8), $NaBH_4 - пиридин$ (9), в которых наблюдается переход модификаций Na_2SO_4 из ромбической в моноклинную и изменение сольватации $NaBH_4$ соответственно.

Авторы выражают благодарность В. И. Михеевой за ценные указания при обсуждении работы.

Институт общей и неорганической химии им. Н. С. Курнакова Академии наук СССР Москва

Поступило 1 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. E. Finholt, A. C. Bond, H. J. Schlesinger, J. Am. Chem. Soc., 69, 1199 (1947). ² B. И. Михеева, С. М. Архипов, ЖНХ, 12, 1142 (1967). ³ L. J. Zakharkin, V. V. Gavrilenko, Yu. N. Karaksin, Synth. in Inorg. and Metal-org. Chem., 1, 37 (1971). ⁴ Т. Н. Дымова, Ю. М. Дергачев, Авт. свид. № 364562, 1972. ⁵ Г. Б. Равич, В. А. Вольнова, Г. Г. Цуринов, Изв. сектора физ.-химич. анализа, 25, 41 (1954). ⁶ Н. С. Курнаков, С. З. Макаров. Изв. ИФХА АН СССР, 4, 329 (1930). ⁷ Е. И. Ахумов, Е. В. Пылкова, ЖНХ, 3, 2180 (1958). ⁶ Справочник по растворимости солевых систем, под ред. В. В. Вязова, А. П. Пельша, 1, 3, Л., 1961. ⁹ В. И. Михеева, Л. В. Титов, ДАН, 149, 609 (1963).