УЛК 547.794.412.72

RUMUX

Д. А. БОЧВАР, Р. Г. ГАСАНОВ, А. М. ГЮЛЬМАЛИЕВ, И. В. СТАНКЕВИЧ, член-корреспондент АН СССР Р. Х. ФРЕЙДЛИНА

К ОЦЕНКЕ ОТНОСИТЕЛЬНОЙ СТАБИЛЬНОСТИ РАДИКАЛОВ ClCH₂CHCCl₃, ClCH₂CHClCCl₂, ClCH₂CClCHCl₂, ClCH₂CHCl₂CHCl

Радикальное присоединение аддендов HX к полихлоралкенам CH_2 — $CYCCl_2Z$, где Y=H, Br, Z=Cl, CH_3 , F, в одних случаях течет без перегруппировки с образованием аддуктов 1,2-присоединения (1a)), в других—с перегруппировкой и образованием «аномальных» продуктов 1,3-присоединения (1б)); в ряде случаев имеет место образование как перегруппированных, так и неперегруппированных соединений $\binom{1}{2}$.

$$HX + CH_2 = CYCCl_2Z$$
 инициатор (a) (a) $XCH_2CHYCCl_2Z$ (b) C перегруппир. $CH_2CYCICCIHZ$ (c) (d) (d)

Перегруппированные продукты образуются в результате изомеризации промежуточных радикалов с 1,2-миграцией атома хлора (стадия 5, схема (2)):

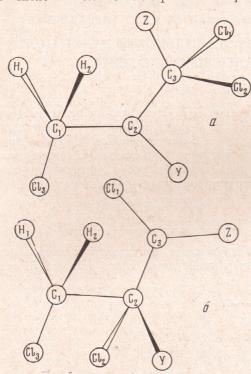
- Инициатор → 2Ř
- 2) R + HX RH + X
- 3) $\dot{X} + CH_2 = CYCCl_2Z \rightarrow XCH_2CYCCl_2Z$
- 4) $XCH_2CYCCl_2Z + HX \rightarrow XCH_2CHYCCl_2Z + X$
- 5) $XCH_2\dot{C}YCCl_2Z \xrightarrow{\text{перегруппир.}} XCH_2CYCl\dot{C}ClZ$
- 6) XCH₂CYClCClZ + HX——XCH₂CYClCClHZ + X.

Недавно (³) на примере радикального присоединения брома к 3,3,3трихлорпропену удалось методом э.п.р. установить образование радикалов двух указанных выше типов.

Примером реакции, текущей с перегруппировкой, является взаимодействие HBr с 3,3,3-трихлорпропеном, в присутствии перекиси бензоила, приводящее к образованию перегруппированного соединения (4):

$$HBr + CH_2 = CHCCl_3 \longrightarrow BrCH_2CHClCCl_2H.$$

Примером реакции, текущей без перегруппировки, является радикальное присоединение HBr к 3,3,3-трихлорпропену (5):


$$HBr + CH_2 = CClCHCl_2 \longrightarrow BrCH_2CHClCHCl_2.$$

Авторами $\binom{1}{2}$ предположено, что течение рассматриваемых реакций с перегруппировкой или без нее, а также степень перегруппировки в основном зависят от относительной стабильности неперегруппированных и перегруппированных радикалов. В частности, в приведенных двух примерах полная энергия $E(\dot{\mathbf{R}})$, характеризующая стабильности неизомеризованных и изомеризованных радикалов, должна удовлетворять неравенствам:

 $E(BrCH_2CHCCl_3) > E(BrCH_2CHClCCl_2),$ $E(BrCH_2CClCHCl_2) > E(BrCH_2CCl_2CHCl).$ (2

Полная энергия изолированного радикала может быть приближенно оценена методами квантовой химии. Такой подход позволяет качественно оценить возможность перегруппировки. В настоящей статье эта задача решается на примере радикалов ClCH₂CHCCl₃(I), ClCH₂CHClCCl₂(III), ClCH₂CClCHCl₂(III) и ClCH₂CCl₂CHCl(IV).

В валентном приближении расширенным методом Хюккеля (р.м.х.) вычислены полные электронные энергии радикалов I – IV *. Найденные

Pnc. 1. Геометрическая модель радикалов для $ClCH_2\dot{C}HCCl_3$, $ClCH_2\dot{C}ClCHCl_2$ (a) и для $ClCH_2CHCl\dot{C}Cl_2$, $ClCH_2CCl_2CHCl$ (б)

величины использованы оценки их относительной стабильности. В качестве базисфункций выбраны атомные орбитали Слейтеровского типа: по четыре орбитали (2s, $2p_x$, $2p_y$, $2p_z$) от каждого атома углерода, по четыре $(3s, 3p_x,$ $3p_y$, $3p_z$) от атома хлора и по одной (1s) от каждого атома водорода. Недпагональные элементы M_{ij} матриды энергии $M = \|M_{ij}\|$ вычислены по формулам Вольфсберга — Гельмгольца (⁶):

$$M_{ij} = 0.875 (M_{ii} + M_{jj}) S_{ij}$$

здесь S_{ij} — интеграл перекрывания; между i-й и j-й атомными орбиталями, M_{ii} — диагональные элементы матрицы M. Диагональные элементы M_{ii} матрицы M определены по потенциалам ионизации атомных орбиталей в соответствующих валентных состояниях $M_{ii} = -I_i$. Выбранные нами валентные состояния атомов и величины потенциалов ионизации определены по таблицам $\binom{7}{1}$ и приведены в табл. 1. Радикалы I—IV

можно разделить на группы A и Б. В первой из них (A) свободную валентность имеет средний (C_2) углеродный атом (I, III), а во второй—свободную валентность имеет крайний (C_3) углеродный атом (II, IV). Валентные углы при углеродном атоме, который имеет свободную валентность, выбраны тригональными, а при всех остальных—тетраэдрическими. Длины связей приняты равными: $r_{C-C} = 1,54$ Å, $r_{C-C1} = 1,77$ Å, $r_{C-H} = 1,09$ Å. Геометрическая модель, выбранная для расчета электронной структуры радикалов группы A, представлена на рис. 1a, а для группы B на рис. 16.

Радикал, представленный на рис. 1a, имеет плоскость симметрии, совнадающую с плоскостью рисунка. Атомы $C_{(1)}$, $C_{(2)}$, $C_{(3)}$, Cl_3 , Y (H или Cl) и Z (H или Cl) находятся в этой плоскости. Атомы $H_{(1)}$, $Cl_{(1)}$ и $H_{(2)}$, $Cl_{(2)}$ расположены, соответственно, симметрично относительно этой плоскости. Для радикалов группы А рассмотрено несколько конформаций. Эти конформации получаются из представленной на рис. 1a вращением группы — CH_2Cl вокруг связи $C_{(1)}$ — C_2 и группы — CCl_2Z вокруг связи $C_{(2)}$ — $C_{(3)}$ против часовой стрелки и характеризуются значениями угла ϕ между

^{*} Для атомов Br и J параметры, обычно используемые в р.м.х., менее обоснованы, чем для атома Cl. Поэтому мы ограничились рассмотрением радикалов, не со-держащих атомы Br и J.

плоскостью, проходящей через атомы $Cl_{(3)}$, $C_{(1)}$ и $C_{(2)}$ и плоскостью рпсунка, и угла θ между плоскостью, проходящей через атомы $Cl_{(1)}$, $C_{(2)}$ и $C_{(3)}$ и плоскостью рисунка. Конформация, представленная на рис. 1a, соответствует случаю $\varphi = \theta = 0$.

На рпс. 16 представлена одна из рассмотренных конформаций радикалов группы Б. Здесь, атомы $C_{(1)}$, $C_{(2)}$, $C_{(3)}$, $Cl_{(3)}$, $Cl_{(1)}$ и Z находятся в плоскости рисунка. Атомы $H_{(1)}$ и $H_{(2)}$ расположены симметрично относительно этой плоскости. Остальные конформации получаются вращением группы $-CH_2Cl$ вокруг связи $C_{(1)}-C_{(2)}$ на угол ϕ . Угол ϕ определяется так же, как и для радикалов группы А. Представленной на рпс. 16 конформации соответствует значение угла $\phi=0$.

Для радикалов I рассмотрены три, а для II две конформации. Величины углов φ и θ и значения полной энергии E приведены в табл. 2. Как

видно из этих данных, все рассмотренные конформации радикала I имеют энергию Eабсолютной величине ПО меньшую, чем конформации радикала II. Поэтому можно ожидать, что переход радикала I в II не зависит от конформационного состояния рассмотренных радикалов. Для радикала І более стабильной является конформация с $\varphi = \theta = 0$, а для II конформация с $\phi = 120^{\circ}$ и $\theta = 0$.

Таблица 1 Валентные состояния, орбитальные потенциалы ионизации атомов Н, С и Cl

Атомы	Валентные состояния	Потенциалы ионизации		
H C Cl	$\begin{array}{c} 1s^{1} \\ 2s^{1} \ 2p^{3} \\ 3s^{2} \ 3p^{5} \end{array}$	13,6 24,69 24,55	12,41 12,98	

Для радикалов III и IV рассмотрены соответственно четыре и две конформации. Значения углов φ и θ , определяющие эти конформации, приведены в табл. 2. Сравнивая значение полных энергий для этих конформаций (табл. 2) мы видим, что при переходе радикала III в IV решающим фактором является выбор конформации.

Таблица 2
Вычисленные значения полной энергип для различных конформаций радикалов ClCH₂CHCCl₃(1), ClCH₂CHClCCl₂(II)
ClCH₂CClCHCl₂ (III) и ClCH₂CCl₂CHCl (IV)

		1				
R		Y	Z	φ°	8.0	−Е, эв
I	1 2 3	H H	Cl Cl	120 60	0 180	743,692 743,773
II	3 1 2	H H H	Cl Cl Cl	0 0 120	0	744,118 744,182 744,968
III	1 2 3	Cl Cl	H H	180	180 180	743,570 742,969
IV	3 4	Cl Cl Cl	H H H	120	0	744,008 744,081 743,730
1 V	2	Cl	H	120		744,019

Сопоставляя численные значения полной эпергии наиболее стабильных конформаций, можно сказать, что переход радикала типа I в II должен сопровождаться выигрышем в энергии, т. е. может иметь место внутримолекулярная 1,2-миграция атома хлора. Энергии основных состояний радикалов III и IV различаются мало, но переход III в IV все же требует до-

полнительной затраты энергии. Схематично это можно представить так: $E(\text{ClCH}_2\text{CHCCl}_3) - 0.85 \text{ эв} = E(\text{ClCH}_2\text{CHClCCl}_2),$ $E(\text{ClCH}_2\text{CClCHCl}_2) + 0.06 \text{ эв} = E(\text{ClCH}_2\text{CCl}_2\text{CClH}).$

Из табл. 2 также видно, что среди радикалов I-IV наиболее стаопльным является радикал II. Полученные результаты показывают важную роль стабильности неперегруппированных радикалов (типа A) и перегруппированных радикалов (типа Б) в перегруппировке.

Институт элементоорганических соединений Академии наук СССР Москва Поступило 6 III 1973

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Р. Х. Фрейдлина, В. Н. Кост, М. Я. Хорлина, Усп. хим., 31, 3 (1962).

² R. Kh. Freidlina, Rearrangement of Radical in Solution, In Advances in Free Radical Chemistry, 1, 211 (1965).

³ Р. Г. Гасанов, В. И. Муромцев, Р. Х. Фрейдлина, Изв. АН СССР, сер. хим., 1973, 179.

⁴ А. Н. Несмеянов, Р. Х. Фрейдлина, Л. И. Захаркин, ДАН, 81, 199 (1951).

⁵ Р. Х. Фрейдлина, В. Н. Кост и др., ДАН, 128, 316 (1959).

⁶ Ю. А. Кругляк, Г. Г. Дядюша и др., Методы расчета электронной структуры и спектров молекул, Киев, 1969.

⁷ О. П. Чаркин, Г. В. Бобыкина, М. Е. Дяткина, в сборн. Строение молекул и квантовая химия, Киев, 1970, стр. 155.