УДК 523.42

АСТРОПОМИЯ

А. Д. ЧЕРНИН, А. Н. ШВАРЦ

АНИЗОТРОПНАЯ КОСМОЛОГИЯ И КОСМИЧЕСКАЯ СТРУКТУРА

(Представлено академиком Я. Б. Зельдовичем 13 XII 1971)

Крупномасштабная однородность и изотропия мпра в современную эпоху не исключает, как известно, сильной неоднородности и апизотропии на начальных фазах космологического расширения. Если такое состояние мира действительно осуществлялось в прошлом, оно должно было не позже чем при $Z\simeq 100$ (¹) сменяться пынешним состоянием изотропии и однородности в масштабах, превосходящих размер «ячейки однородности» $L\simeq 100$ Мпс. Интересно, что величина L удовлетворяет приближенному соотношению $L\simeq \omega c/H$, где $\omega\simeq (1-3)\cdot 10^{-2}$ — отношение «размазанной» плотности вещества галактик к критической плотности, $H\simeq 1/t_0$ — фактор Хаббла; $t_0\simeq 3\cdot 10^{17}$ сек — современный возраст мира.

Мы хотели бы обратить здесь внимание на то, что процесс гомогенизации и изотропизации при общем космологическом расширении может развиваться в больших пространственных масштабах $(\lambda > L)$ быстрее, чем в малых. При этом наблюдаемая космическая структура — галактики, скопления галактик со значительными отклонениями от однородности и изотропии в сравнительно малых масштабах $(\lambda < L)$, могла бы рассматриваться как остаток, реликт гипотетической анизотропной начальной фазы расширения мира (2). Мы продемонстрируем принципиальную возможность такой эволюции мира на примере некоторых простых решений уравнений общей теории относительности для свободного гравитационного поля, которое в ряде случаев можно понимать как совокупность гравитационных волн с различными длинами волн.

Пусть распределение по длинам волн таково, что в масштабе, большем некоторого λ_0 , имеется изотропный в среднем фон коротких гравитационных волн с длинами волн $\lambda \ll \lambda_0$ и кроме того имеются длинные ($\lambda > \lambda_0$) гравитационные волны. Для масштабов $\lambda \gg \lambda_0$ коротковолновое гравитационное излучение эквивалентно жидкости с уравнением состояния $p_g = \frac{1}{3}\epsilon_g$. Что же касается длинных волн, то мы будем считать, что они создают лишь малые возмущения в метрике, определяемой в основном изотропным излучением и веществом. Математической основой рассматриваемой ситуации служит решение для малых возмущений в изотропном мире (3).

На начальной стадии расширения $(t < t_*)$, когда плотность энергии излучения (электромагнитного или гравитационного) превосходит илотность энергии вещества, возможны гравитационные волны, амплитуда которых $h_{\alpha}{}^{\beta}$ изменяется со временем по закону $h_{\alpha}{}^{\beta} \sim 1/t^{t_2}$, не зависящему от длины волны *. Если вблизи космологической сингулярности имелось равнораспределение энергии по различным модам возмущений (4), то в период $t < t_*$ остается постоянным и равным примерно единице отношение плотности энергии коротких волн ϵ к плотностям энергии коротковолновых акустических и вихревых возмущений. На стадии преобладания вещества $(t > t_*)$ амплитуда длинных гравитационных волн падает быст-

^{*} Длинным волнам в решении (3) отвечает условие $\lambda > a > ct$; это означает, что строго говоря, они не являются волнами в обычном смысле.

⁴ Доклады АН, т. 205, № 5

рее $(\infty \, 1/t)$, чем амилитуда коротких волн $(\infty \, 1/t^{2/3})$, что и означает

преимущественную изотропизацию в больших масштабах.

Пусть теперь одновременно с изотропными коротковолновым гравитационным излучением имеется крупномасштабное гравитационное поле, характеризуемое очень большой, формально бесконечной длиной волны, которое уже не считается слабым. Такому полю отвечает метрика, значительно отличающаяся от метрики Фринмана: в простейшем случае ее можно локально описать интервалом ds, соответствующим однородному, но анизотропному пространству (5, 6). Анизотропия, а значит, и длинногравитационное поле существенны вблизи сингулярности $(t \to 0)$, когда метрика принимает казнеровский вид; но при больших временах $(t \to \infty)$ метрика определяется изотропными коротковолновым излучением и веществом (1, 7-9). В этом примере общая изотропизация мира при $t > t_*$ сопровождается более быстрым ослаблением амплитуды длинноволнового поля, чем коротковолнового (с тем же временным законом, что и выше).

Рассмотренные здесь примеры являются, конечно, весьма ограниченными; они не позволяют, в частности, полностью учесть особенности взаимодействия гравитационного поля с веществом. Такое взаимодействие приводит к поглощению гравитационных волн, если эффективны диссипативные процессы в веществе (10). С другой стороны, и это особенно важно, неоднородное и апизотронное гравитационное поле способно, по-видимому, создавать локальные возмущения в веществе, которые могли бы затем усиливаться на фридмановской фазе космологического расширения. Такое усиление возможно, однако, лишь до эпохи $t_i \simeq \Omega t_0$, где Ω — отношение полной плотности мира к критической, которое скорее всего не слишком отличается от значения ω . Заметим, что при $t=t_i$ радиус кривизны, разделяющий волны па короткие и длиные, принимает значение $a(t_i) \simeq \Omega ct_0 \simeq \omega c / H$; эта характерная длина (11) решения Фридмана близка к размеру «ячейки однородности» (см. выше).

Авторы выражают признательность акад. Я. Б. Зельдовичу за внимание к работе и полезные указания. Один из авторов (А. Ч.) благодарен Ч. Мизнеру, К. Торпу и Дж. Уплеру за обсуждение проблемы и В. А. Рубану за ценные замечания.

Физико-технический институт им. А. Ф. Иоффе Академии наук СССР Ленинград Поступило 9 XII 1971

Московский государственный университет им. М. В. Ломоносова

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Я. Б. Зельдович, Н. Д. Новиков, Релятивистская астрофизика, М., 1967, стр. 558. ² А. Д. Чернии, Astrophys. Let., 8, 31 (1971). ³ Е. М. Лифшиц, ЖЭТФ, 16, 587 (1946). ⁴ Я. Б. Зельдович, И. Д. Новиков, Астрон. журп., 46, 960 (1969). ⁵ О. Несктапп, Е. Schucking, in: Gravitation, N. V., 1962, Chap. 11. ⁶ А. С. Компанеец, А. С. Чернов, ЖЭТФ, 47, 1939 (1964). ⁷ А. Г. Дорошневич, Астрофизика, 2, 37 (1966). ⁸ С. W. Misner, Astrophys. J., 151, 431 (1968). ⁹ С. W. Misner, Phys. Rev., 186, 1319 (1969). ¹⁰ S. W. Hawking, Astrophys. J., 145, 544 (1966). ¹¹ А. Д. Чернин, Письма ЖЭТФ, 8, 633 (1968).