УДК 576.31

ЦИТОЛОГИЯ

А. М. СИЛАЕВА

СРАВНИТЕЛЬНОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ ДВУХ ТИПОВ ХЛОРОПЛАСТОВ КУКУРУЗЫ

(Представлено академиком А. Л. Курсановым 16 IV 1973)

Для кукурузы характерно наличие двух типов хлоропластов, отличающихся по структуре и функциям: хлоропласты клеток мезофилла и хлоропласты клеток обкладки, окружающих проводящие пучки (рис. 1, а). Диморфизм этих хлоропластов на уровне электронной микроскопии впервые был обнаружен в 1955 г. Ходжем (1) и подтвержден затем в работах других авторов (2-8). Предположения об их функциональной разнокачественности высказывались уже давно (9, 10) и получили подтверждения в целом ряде исследований (11-14). В работах (3, 15) была предложена пространственная модель хлоропласта мезофилла. Поскольку в последние годы возрос интерес к растениям с необычным механизмом фотосинтетической фиксации CO_2 и ее дальнейших превращений — так называемым растениям типа C_4 (16-18), или растениям с кооперативным механизмом фотосинтеза (19-21), к которым принадлежит и кукуруза, нам представлялось своевременным произвести уточнение указанной модели в свете новейших экспериментальных данных, а также построить модель хлоропласта обкладки. С этой целью был проведен анализ серийных ультратонких срезов, а также изолированных хлоропластов обоих типов, для чего была специально разработана методика их раздельного выделения, основанная на различной устойчивости клеток мезофилла и клеток обкладки к механическому разру-

На рис. 1, б показана негативно окрашениая суспензия хлоропластов мезофилла. Обращают на себя внимание причудливые мембранные кружева, постепенно переходящие в систему межгранных связей пли тесно связанные с нею. Есть все основания отождествить это образование с периодическим ретикулумом, наблюдавшимся ранее только на срезах хлоропластов (16-18, 22-25). Роль периферического ретикулума пока не вполне ясна, однако, принимая во внимание его связь с впутренними мембранами оболочки хлоропласта (рис. 16, 2, стрелки), заманчиво приписать ему участие в энерго- и массообмене хлоропласта с цитоплазмой.

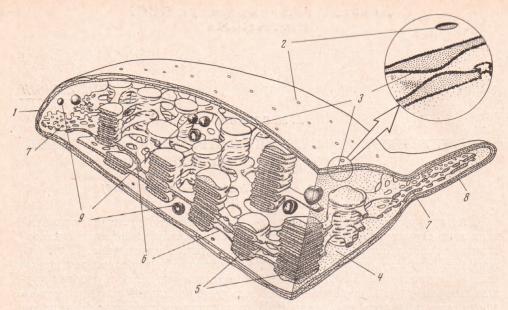


Рис. 2. Модель строения хлоропласта мезофилла кукурузы. Объяснения в тексте

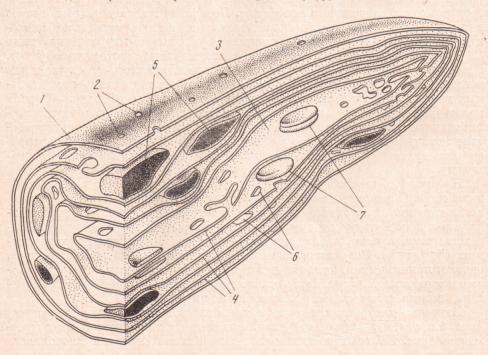


Рис. 3. Модель строения клоропласта обкладки кукурузы. Объяснения в тексте

биоколлоидом — стромой 4, в которую погружен гранулярно-сетчатый комплекс (5 — граны, 6 — межгранная сеть) — единая фотоэнергетическая система хлоропласта. По периферии хлоропласта межгранная сеть может переходить в периферический ретикулум 7, который часто заполняет и выпячивания хлоропласта $8 \ (^{27}) \ ($ рис. 1z). К числу структурных компонентов хлоропласта мезофилла следует отнести и осмиофильные глобулы $9 \ (^{28})$. Развитое в $(^3, ^{15})$ на основе анализа ультратонких срезов представление о пространственной конфигурации межгранных связей (иначе называемых

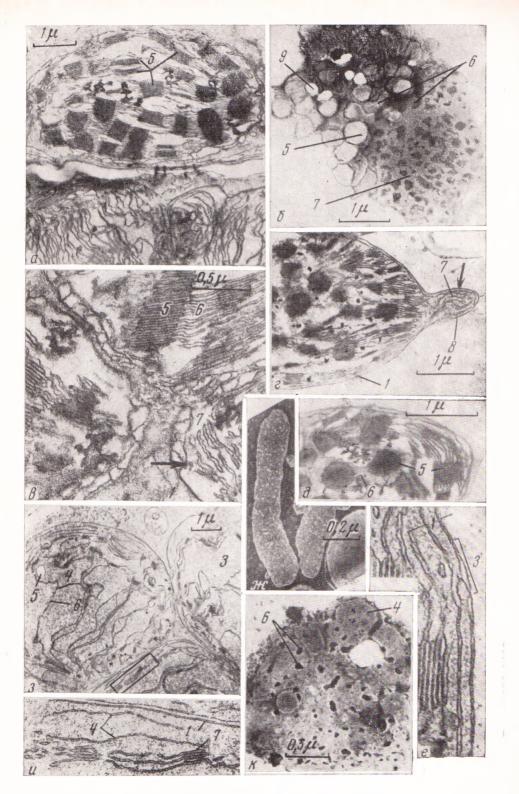


Рис. 1. Электронные микрофотографии двух типов хлоропластов кукурузы и их фрагментов. a — срез двух соседствующих клеток мезофилла (вверху) и обкладки (внизу); δ — суспензия выделенных хлоропластов мезофилла; ϵ — срез хлоропластов мезофилла, демонстрирующий связь нериферического ретикулума с оболочкой (стрелка); ϵ , δ — срезы хлоропластов мезофилла; ϵ — многослойное строение оболочки хлоропласта мезофилла на срезе; κ — суспензия выделенных мембран межгранной сети; ϵ , ϵ — срез хлоропластов клеток обкладки, демонстрирующий существование псевдогран; ϵ — изолированная мембрана из хлоропласта обкладки с перфорациями. На рис. ϵ — ϵ цифровые обозначения соответствуют схеме рис. 2, на рис. ϵ — ϵ — схеме рис. 3, см. текст.

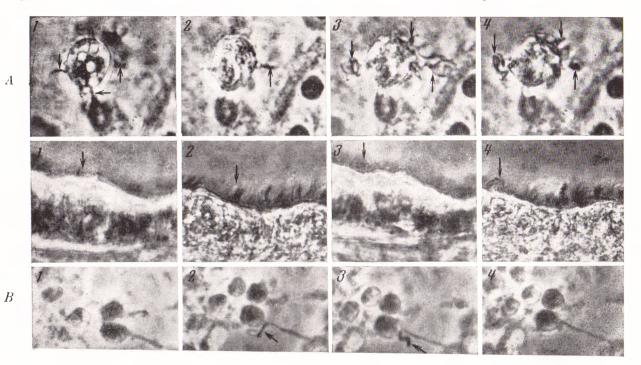


Рис. 1. Влияние ионов калия на двигательную активность клеток зрительной коры мозга новорожденной белой крысы в тканевой культуре. A — изменения отростков макрофага: 1, 2 — до введения K^{+} в среду; 3 — через 1 мин. после увеличения [К+] н до 5,6 ммол/ /л; 4 — через 2 мин.; стрелками указаны отростки, E — изменения двигательной активности реснитчатого аппарата эпендимы: 1 — эпендимная выстилка до введения К+; 2 через 30 сек. после увеличения $[K^+]_H$ до 62 ммол/л; 3 — через 4 мин.; 4 — через 3 сек. после увеличения [К+] и до 114 ммол/л; стрелками указан реснитчатый аппарат. В изменение отростков одигодендроцита: 1 — до введения K^+ ; 2 — через 10 мин. после увеличения $[K^{+}]_{H}$ до 14,2 ммол/л; 3 — через 11 мин.; 4 — через 16 мин.; стрелками указан повообразованный отросток

тилакоидами стромы) получило свое подтверждение при исследовании пре-

паратов выделенных мембран межгранной сети (рис. $1 \, \pi$).

Хлоропласт обкладочной паренхимы (рис. 3) можно охарактеризовать как вытянутый эллипсоид (часто изогнутый) с большой осью 10-12 µ и малой 2-4 µ. Оболочка 1 обычно одномембранная с порами 2. Внутренность хлоропласта заполнена стромой 3, в которой размещена коаксиальная система фотосинтетических мембран 4. Между ними без особого порядка расположены капсулы с крахмальными зернами 5. Полости, ограниченные мембранами, сообщаются между собой через отверстия 6 в мембранах. Перфорированность мембран хорошо видна на препаратах выделенных фрагментов хлоропластов обкладки (рис. $1 \, \kappa$). Прежде считалось, что в хлоропластах обкладки граны отсутствуют (1, 2, 5), но уже в 1964 г. мы наблюдали в них недоразвитые граны при фосфорном голодании растений кукурузы (³, ⁴, ¹²). Новейшими же исследованиями (⁸, ¹⁷, ²⁵, ²⁹, ²⁹, ³⁰), как и нашими наблюдениями (рис. 13, u), доказано существование таких рудиментарных гран (назовем их «псевдогранами») в хлоропластах обкладки нормально развивающихся растений кукурузы на некоторых этапах онтогенеза. На нашей схеме псевдограны обозначены цифрой 7. Замечено, что с появленпем и с ростом их количества резко увеличивается перфорированность мембран, что структурно сближает эти мембраны с межгранной сетью хлоропласта мезофилла или с мембранами периферического ретикулума.

Дальнейшие исследования и накопление новых экспериментальных данных неизбежно повлекут уточнение предложенных моделей, но и в настоящем виде они могут быть полезными как при описании морфологии двух тинов хлоропластов (в целом или отдельных фрагментов), так и при попытках сопоставления тех или иных функциональных нагрузок с опреде-

ленными элементами структуры хлоропласта.

Институт физиологии растений Академии наук УССР Киев

Поступило 4 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ А. J. Hodge, J. D. McLean, F. V. Mercer, J. Biophys. Biochem. Cytol., 2, 605 (1955). ² C. B. Тагеева, И. П. Павлова, А. Б. Брандт, Изв. АН СССР, сер. биол., № 1, 13 (1962). ³ А. М. Силаева, Автореферат капдидатской диссертации, Киев, 1964. ⁴ А. М. Силаева, С. І. Лебедев, Укр. бот. журн., 21, № 5, 39 (1964). ⁵ О. П. Осипова, Н. И. Ашур, Физиол. раст., 12, № 2, 257 (1965). ⁶ С. Е. Дунаева, Цитология, 12, № 3, 297 (1970). ⁷ Л. П. Лапипа, Б. А. Понов, Физиол. раст., 18, № 2, 409 (1971). ⁸ К. С. Woo, N. А. Руliotis, W. J. S. Downton, Zs. Pflanzenphysiol., 64, № 5, 400 (1974). ⁹ В. Г. Александров, Бот. журн., 35, № 5, 475 (1950). ¹⁰ А. Л. Курсанов, Меченые атомы в разработке научных основ питация растений. Изд. АН СССР, 1954. ¹¹ Н. А. Пристуща, Физиол. раст., 11, № 1, 38 (1964). ¹² А. М. Силаева, Физиол. раст., 13, № 4, 623 (1966). ¹³ С. R. Slack, Phytochem., 8, 831 (1969). ¹⁴ J. R. Berry, W. J. S. Downton, E. B. Tregunna, Canad. J. Bot., 48, № 4, 777 (1970). ¹⁵ А. М. Silayeva, A. I. Shiryayev, VI Intern. Congr. Electr. Micr. Kyoto, 2, 1966, p. 375. ¹⁶ J. Rosado-Alberio, T. E. Weier, C. R. Stocking, Plant Physiol., 43, № 9, 4325 (1968). ¹⁷ W. M. Laetsch, Sci. Progr. Oxf. 57, 323 (1969). ¹⁸ W. M. Laetsch, Am. J. Bot., 55, № 8, 875 (1968). ¹⁹ M. D. Hatch, C. R. Slack, Ann. Rev. Plant Physiol., 21, 141 (1970). ²⁰ W. J. S. Downton, J. A. Berry, E. B. Tregunna, Zs. Pflanzenphysiol., 63, № 2, 194 (1970). ²¹ Ю. С. Карпилов, Труды Молд. НИИОЗиО, 11, № 3, 3 (1970). ²² E. A. Мирославов, Цитология, 13, № 4, 108 (1971). ²³ С. Е. Дунаева, Автореф. кандидатской диссертации, Л., 1971. ²⁴ L. K. Shumway, T. E. Weier, Am. J. Bot., 54, № 6, 773 (1967). ²⁵ C. C. Black jr., H. H. Mollenchauer, Plant Physiol., 47, № 4, 15 (1970). ²⁶ A. М. Силаева, Укр. бот. журн., 23, № 6, 39 (1966). ²⁷ А. М. Силаева, ДАН, 184, № 2, 486 (1969). ²⁸ А. М. Силаева, А. И. Ширяев, ДАН, 170, № 2, 433 (1966). ²⁹ Т. Е. Weier, C. R. Stocking, L. K. Shumway, Brookhaven Symp. Biol