УДК 542.921.4 + 547.313.2 + 546.11-123

ФИЗИЧЕСКАЯ ХИМИЯ

Ю. П. ЯМПОЛЬСКИЙ, Ю. В. МАКСИМОВ, член-корреспондент АН СССР К. П. ЛАВРОВСКИЙ

ИССЛЕДОВАНИЕ РАДИКАЛЬНО-ЦЕПНЫХ РЕАКЦИЙ ПРИ ТЕРМИЧЕСКИХ ПРЕВРАЩЕНИЯХ ЭТИЛЕНА

Для исследования механизма термических превращений этилена может быть применен метод определения концентраций атомарного водорода с помощью добавок дейтерированных соединений, первоначально использованный для изучения крекинга этана (¹). Было исследовано термическое разложение этилена с добавками D_2 (3,7 и 7,0%) и CD_4 (4,3 и 9,7%) при давлениях 30-180 мм рт. ст. и температурах $780-950^{\circ}$ С. В опытах использовали ту же методику, что и в работе (¹). Изотопный состав водорода определялся масс-спектрометрическим методом. Концентрации атомов Н вычисляли по формулам:

$$[H] = r (HD)/k_1 [D_2],$$
 (I)

$$[H] = r (HD)/k_2 [CD_4], \qquad (II)$$

где $r(\mathrm{HD})$ — скорость образования $\mathrm{HD},$ а для констант скорости реакций

$$H + D_2 \rightarrow HD + D, \tag{1}$$

$$H + CD_4 \rightarrow HD + CD_3 \tag{2}$$

приняты значения $\lg k_1 = -10.12 - 9.39 / 2.3 \ RT$ (2); $\lg k_2 = -10.07 - 14.6 / 2.3 \ RT$ см³/молек·сек (1). Если образующийся по реакции (1) атом D будет преимущественно вступать в реакцию отрыва водорода, давая HD, из условия стационарности концентрации D

$$k_1 [H] [D_2] = k_3 [D] [RH],$$
 (III)

где k_3 — константа скорости реакции

$$D + RH \rightarrow HD + R, \tag{3}$$

следует, что скорость образования HD вдвое больше скорости реакции (1), и в знаменателе формулы (I) должен появиться коэффициент 2. Сказанное выше относится, в частности, к крекингу этана (1). При пиролизе этилена атом D преимущественно вступает в реакции присоединения, а не отрыва, поэтому справедливой оказывается формула (I).

Метод определения [H] по скорости образования HD (¹) основан на предположении, что реакции (1) или (2) являются единственными источниками HD, и вторичными реакциями HD можно пренебречь. Последнее прямо следует из того факта, что глубина изотопного обмена D_2 (а следовательно, и вторичных реакций HD), в условиях опыта не превышала 20%. Более сложной задачей являлся учет других возможных источников HD. Таким источником, в частности, могут быть протекающие при высоких температурах процессы изотопного обмена с участием колебательно-возбужденных молекул, подробно изученные в последние годы (³). Реакции эти особенно характерны для простых (H_2 , D_2 , N_2) и ненасыщенных молекул (C_2H_2 — C_2D_2 , C_2H_2 — D_2) и протекают с низкими энергиями активации (25—30 ккал/моль). В то же время для насыщенных многоатомных молекул (CH_4 — CD_4) изотопный обмен протекает по радикально-цепному механизму с энергией активации 70 ккал/моль (4). Если бы концентрации

атомов H, измеренные в опытах с добавками D_2 и CD_4 , сильно различались, а именно $(H)_{D_2} \gg (H)_{CD_4}$, можно было бы ожидать, что это связано с протеканием молекулярных реакций изотопного обмена. В противном случае вклад этих реакций, по-видимому, несуществен.

Результаты определения концентрации атомарного водорода при пиролизе этилена представлены на рис. 1. Полученные значения [H] не

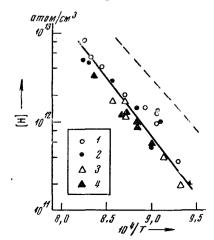


Рис. 1. Концентрации атомов Н при пиролизе этилена $1-C_2H_4+CD_4$, p=100 мм рт. ст.; 2, 3, $4-C_2H_4+D_2$, p=100, 180 и 30 мм рт. ст. соответственно; штриховая линия—
[H] при крекинге этана (1)

меняются при замене D_2 на CD_4 , не зависят от полного давления в системе, которое изменяли в 6 раз, и, наконец, не зависят от величины добавки дейтерированного соединения. Температурный коэффициент стационарной концентрации атомов H соответствует энергии активации 61 ± 5 ккал/моль. Близкое совпадение $[H]_{D_2}$ и $[H]_{CD_4}$ может служить указанием на то, что HD в присутствии D_2 и CD_4 образуется по элементарным реакциям (1) и (2), и согласуется с тем, что основной вторичной реакцией атома D является присоединение.

При анализе данных, представленных на рис. 1, прежде всего обращают на себя внимание высокие абсолютные значения [H]. При пиролизе этилена при 800—950° концентрации атомарного водорода оказываются всего в 3—4 раза ниже, чем [H], измеренные в том же интервале температур при крекинге этана, который имеет радикально-цепной

механизм, причем атомы H участвуют в продолжении основной цепи. Это заставляет сразу отбросить предположение о чисто молекулярном механизме пиролиза C_2H_4 .

Для сравнения полученной экспериментально концентрации атомов Н со значениями, следующими из различных моделей пиролиза этилена, необходимо знать константы скорости инициирования, в качестве которого были рассмотрены следующие реакции:

$$2C_2H_4 \rightarrow C_2H_3 + C_2H_5,$$
 (4)

$$C_2H_4 \rightarrow C_2H_3 + H. \tag{5}$$

Эти величины могут быть вычислены с помощью термохимических параметров этих реакций. Наименее точно известна теплота образования винильного радикала ΔH_f^0 (C₂H₃), для которой здесь будет принято значение 64 ккал / моль. Другие приводимые в литературе значения отличаются на \pm 5 ккал/моль (5, 6), что соответствует в вычисляемых с помощью $\Delta H_i{}^o$ (C_2H_3) константах равновесия и скорости при 1200° коэффициенту ~ 8 . Реакцию (5) обычно не рассматривают на том основании, что она имеет слишком высокую энергию активации. Однако процесс распада сложной молекулы с образованием атома или простого радикала, как правило, характеризуется высокими значениями предэкспонента $10^{16} - 10^{18} \, \mathrm{cek^{-1}}$ (°). В результате соответствующие константы скорости при высоких температурах, когда вклад экспоненциального члена не столь существен, оказываются соизмеримыми с константами скорости реакций, имеющих более низкую энергию активации (например, реакции (4)). Для определения k_5 была вычислена константа равновесия K_5 . Необходимые для расчета значения ΔH_f^0 , S^0 и $C_{\rm P}^0$ заимствованы из (6). В области температур 1200° К константу равновесия K_{s} можно представить $\lg K_{5} = 7.5 - 105.8 / 2.3 RT$

(молек / см³). Приняв, согласно (¹), для константы скорости обратной реакции значение $k_{-5} = 6 \cdot 10^{-11}$ см³ / молек сек, получили значение k_5 , приведенное ниже. В качестве стадий продолжения цепи были приняты реакции (6)—(8). Первая из них рассмотрена Бенсоном и Хаугеном (8). Однако нельзя исключать, что распад винильного радикала протекает по первому порядку (реакция (7)):

$$C_2H_3 + M \rightarrow C_2H_2 + H + M,$$
 (6)

$$C_2H_3 \rightarrow C_2H_2 + H, \tag{7}$$

$$H + C_2H_4 \rightarrow H_2 + C_2H_3.$$
 (8)

Наконец, в качестве процессов обрыва цепей рассматривались реакции квадратичной (9) и линейной (10) гибели C_2H_3 радикалов:

$$C_2H_3 + C_2H_3 \rightarrow C_2H_2 + C_2H_4 (C_4H_6),$$
 (9)

$$C_2H_3 \rightarrow \text{продукты},$$
 (10)

причем для k_9 принималось значение такое же, как для рекомбинации этильных радикалов, для которой имеются многочисленные данные (°). Значения всех констант скорости, использованных при расчете концентрации H и ее температурного коэффициента E_H , были следующие:

Реакция 4 5 6 7 8 9
$$\frac{\lg A}{(\mathsf{cm^8 \cdot mone \kappa^{-1} \cdot ce \kappa^{-1}},\; \mathsf{или}\;\; \mathsf{ce \kappa^{-4}})}$$
 —9,1 17,7 —8,9 14 —10,9 —10,4 $E,\;\; \mathsf{ккал/monb}$ 64,7 105,8 31,5 40,0 7,2 — (8) Pacчет (8) (10) (11) (9)

Результаты расчета для восьми вариантов механизма, различающихся стадиями инициирования, продолжения цепи и обрыва, представлены в табл. 1. Там же приведены результаты эксперимента. Сравнение проводилось по четырем параметрам: порядку [H] по этилену, порядку по этилену для суммарной реакции, абсолютной величине [H] при некоторой температуре и энергии активации $E_{\rm H}$. Очевидно, что две последние величины должны зависеть от погрешностей использованных при расчете констант скоро-

 $\begin{tabular}{lll} T аблица & 1 \\ P азличные радикально-цепные модели пиролиза C_2H_4 \\ \end{tabular}$

№ модели	Иниции- рование	Обрыв	Распад С ₂ Н ₃	Показатель <i>п</i> в формуле [H] ~[C ₂ H ₄] ⁿ	Порядок реакции по С ₂ Н ₄	[H] при 1200° K, атом/см ³	$E_{f H}$ ккал/моль
	порядок			[11]~[02114]	110 (12114	a tom/ent-	
- 1	2	2	2	1	2	1 6.1010	56,6
$\dot{\tilde{2}}$	$\frac{1}{2}$	$\frac{1}{2}$	1	Ö	1	$1,6\cdot10^{10} \ 4,0\cdot10^{13}$	65.1
3	2	1	2	2	3	/	$76, \overline{2} \\ 97, \overline{5}$
4	2	1	1	1	2		97,5
5	1	2	2	1/2	1,5	$1.0 \cdot 10^{11} \ 2.5 \cdot 10^{14}$	77,2
6	1 1	2	1	1/2	0,5	$2.5 \cdot 10^{14}$	85,7
7	1	1	2	1 1	$2^{'}$	· —	130,1
8	1	1	1 1	0	1	_	138,6
Эксперимент				0	1	$5 \cdot 10^{12}$	61 ± 5

сти. Концентрации атомарного водорода вычислялись только для квадратичного обрыва. Порядок реакции по этилену для тех же условий эксперимента был установлен ранее (12).

Как видно из табл. 1 только для двух моделей (2 и 8) удается получить [H], которые бы не зависели от $[C_2H_4]$, однако модель 8 дает неоправданно высокое значение E_H . Из механизма Бенсона-Хаугена (8) (модель 1) следует прямая пропорциональность между [H] и $[C_2H_4]$ и второй порядок

по этилену, что не согласуется с результатами эксперимента (см. например, (12 , 13)). Модель 1 дает значение [H] на 2,5 порядка ниже экспериментального. Значение, полученное для модели 2, ближе всего к экспериментальному и отличается от него меньше чем на порядок. Неожиданно высокое значение [H] было получено для модели 6 с инициированием по реакции (5). Оно, по-видимому, завышено, что связано с приближенным характером расчета k_5 . Наконец, экспериментальное значение $E_{\rm H}$ лучше всего согласуется с величинами, вычисленными для механизмов (1) и (2). Значение $E_{\rm H}$ для всех остальных моделей оказываются существенно выше.

Таким образом, наилучшее согласие с данными эксперимента наблюдается для модели 2, характеризуемой квадратичным зарождением и гибелью непей и распадом винильного радикала по первому порядку.

Следует отметить, что наряду с последовательностью реакций (7) и (8) должна иметь место другая цепь (8):

$$C_2H_3 + C_2H_4 \rightarrow C_4H_6 + H$$
 (11)

и далее — реакция (8). Протекание реакции по этому направлению должно приводить к возрастанию n до 1, суммарного порядка по C_2H_4 — до 2 и снижению $E_{\rm H}$ до 32 ккал/моль. Поскольку протекание реакции (11) должно становиться преобладающим при более низких температурах и высоких парциальных давлениях этилена, выводы данной работы относятся преимущественно к пиролизу этилена при температурах $850-950^{\circ}$ С и выше.

Для выяснения роли молекулярных реакций дегидрирования при пиролизе этилена следовало бы сравнить наблюдаемую в эксперименте скорость образования водорода со скоростью реакции (8). Такая оценка, однако, затруднена из-за недостаточной надежности приводимых для k_8 значений (8 , 14 , 11). Оценить вклад молекулярных реакций можно, определяя изотонный состав водорода в продуктах пиролиза смесей $C_2H_4 + C_2D_4$ так же, как это было сделано ранее для систем с $C_2H_2 + C_2D_2$ и $C_2H_4 + C_2D_2$ (15). Предварительные опыты с $C_2H_4 + C_2D_4$ показывают, что скорость молекулярных реакций дегидрирования при $750-800^\circ$ может составлять около 50% от общей скорости образования водорода в системе. При этом по молекулярному механизму может протекать не только дегидрирование этилена до ацетилена, но и элементарный распад этилена на поверхности и вторичные реакции ацетилена (15). Это подтверждается тем, что при пиролизе этилена скорость образования H_2 всегда больше, чем сумма скоростей образования C_2H_2 и C_4H_6 (12).

Институт пефтехимического синтеза им. А. В. Топчиева Академии наук СССР Москва Поступило 16 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 Ю. П. Ямпольский, Ю. В. Максимов и др., ДАН, 200, 651 (1971).
2 А. А. Westenberg, N. de Haas, J. Chem. Phys., 47, 4241 (1967). 3 S. H. Bauer, 14 Symposium on Combustion, San Francisco, 1966, p. 759. 4 A. Burcat, A. Lifshitz, J. Chem. Phys., 52, 3613 (1970). 5 M. L. Boyd, M. H. Back, Canad. J. Chem., 46, 2427 (1968). 6 C. Бенсон, Термохимическая кинетика, М., 1971. 7 D. R. Blackmore, C. N. Hinshelwood, Proc. Roy. Soc. A, 271, 34 (1963). 8 S. W. Benson, G. R. Haugen, J. Phys. Chem., 71, 1735 (1967). 9 B. H. Кондратьев, Константы скорости газофазных реакций, «Наука», 1970. 10 М. Н. Васк, Сапаd. J. Chem., 49, 2199 (1971). 11 В. В. Азатян, А. Б. Налбандян, Цуй Мэн-юань, ДАН, 149, 1095 (1963). 12 Ю. П. Ямпольский, А. М. Бродский и др., Нефтехимия, 4, 691 (1964). 13 G. В. Skinner, R. C. Sweet, S. K. Davis, J. Phys. Chem., 75, 1 (1971). 14 В. Н. Панфилов, Автореф. кандидатской диссертации, Новосибирск, 1964. 15 Ю. П. Ямпольский, Ю. В. Максимов, К. П. Лавровский, ДАН, 205, № 1 (1972).