УДК 517.946

MATEMATUKA

А. Б. ШАБАТ

ОБ УРАВНЕНИИ КОРТЕВЕГА — ДЕ ФРИСА

(Представлено академиком М. А. Лаврентьевым 18 XII 1972)

Данная работа распадается на две части. Сначала излагается схема построения класса квазилинейных уравнений, которые сводятся к линейным указанной ниже заменой (4) искомых функций. Представителем этого класса является, например, уравнение

$$u_t + u_{xxx} + c(x, t)u_x + c_x(x, t)u + uu_x = 0,$$
 (1)

имеющее приложения в гидродинамике. Далее в качестве каждого примера детально исследуется задача Коши для уравнения Кортевега — де Фриса (c = 0). Начало этому исследованию было положено в работе (), но, несмотря на многочисленные публикации, математически точные результаты публикуются, по-видимому, впервые. Другой подход к вопросу об интегрировании уравнения Кортевега — де Фриса можно найти в работе (2).

Излагаемая теория основана на алгебре операторов, обладающих свойством дифференцирования относительно свертки функций из $C_0^{\infty}(\mathbb{R}^2)$:

$$L(u*v) = Lu*v + u*Lv, \quad (u*v)(x,y) \stackrel{\text{onp}}{=} \int_{-\infty}^{+\infty} u(x,s)v(s,y) ds. \tag{2}$$

Точнее, мы ограничимся подалгеброй \mathcal{A} , порожденной следующими операторами умпожения и дифференцирования:

$$L_0 = f(t, x) - f(t, y), \quad D_0, \quad L_m = D_1^m + (-1)^{m-1}D_2^{m-1}, \quad m \geqslant 1.$$
 (3)

Мы предполагаем, что функции в формуле (2) зависят еще от параметра: $u=u(t,x,y),\ldots$, и через D_k , k=0,1,2, обозначаем операторы дифференцирования по переменной с соответствующим номером.

Нелинейная замена, о которой говорилось в начале статьи, близка к соотношению, связывающему ядра интегрального оператора и его резольвенты:

$$\psi(t,x,y) + \chi(t,x,y) + \int_{x}^{\infty} \psi(t,x,s) \chi(t,s,y) ds = 0.$$
 (4)

Формула, аналогичная (2), принимает теперь следующий вид. Пусть

$$w(x, y) = v(x, y) + \int_{x}^{\infty} u(x, s) v(s, y) ds, \quad u, v \in C_0^{\infty}(\mathbf{R}^2).$$

Тогда для любого оператора $L \subseteq \mathcal{A}$ существует оператор \widetilde{L} , отличающийся от L младшими членами и зависящий от выбора вольтеррова ядра u(x,y), такой, что

$$\widetilde{L}w(x,y) = Lv(x,y) + \int_{x}^{\infty} u(x,s)(Lv)(s,y) ds +$$

$$+ \int_{x}^{\infty} (\widetilde{L}u)(x,s)v(s,y) ds \quad \forall v \in C_{0}^{\infty}.$$
(5)

Например,

$$\widetilde{L}_{1} = L_{1}, \quad \widetilde{L}_{2} = L_{2} + 2 \frac{d}{dx} u(x, x), \quad \widetilde{L}_{3} = L_{3} + 3 \frac{d}{dx} u(x, x) D_{1} + 3 \frac{d}{dx} \left(D_{1} u(x, x) + \frac{1}{2} u^{2}(x, x) \right).$$

Начиная систематическое изучение замены (4), мы принимаем

Определение 1. Непрерывную функцию K(x,y) назовем регулярным ядром, если определенная при всех значениях (x_0,y_0) полунорма

$$|||K|||(x_0, y_0) \stackrel{\text{onp}}{=} \Big\{ \sup_{x > x_0} \int_{y_0}^{\infty} |K(x, y)| dy + \sup_{y > y_0} \int_{x_0}^{\infty} |K(x, y)| dx \Big\} \rightarrow 0$$

$$|||K|||(x_0, y_0) \stackrel{\text{onp}}{=} \Big\{ \sup_{x > x_0} \int_{y_0}^{\infty} |K(x, y)| dy + \sup_{y > y_0} \int_{x_0}^{\infty} |K(x, y)| dx \Big\} \rightarrow 0$$

$$|||K|||(x_0, y_0) \stackrel{\text{onp}}{=} \Big\{ \sup_{x > x_0} \int_{y_0}^{\infty} |K(x, y)| dy + \sup_{y > y_0} \int_{x_0}^{\infty} |K(x, y)| dx \Big\} \rightarrow 0$$

$$|||K|||(x_0, y_0) \stackrel{\text{onp}}{=} \Big\{ \sup_{x > x_0} \int_{y_0}^{\infty} |K(x, y)| dy + \sup_{y > y_0} \int_{x_0}^{\infty} |K(x, y)| dx \Big\} \rightarrow 0$$

$$|||K|||(x_0, y_0) \stackrel{\text{onp}}{=} \Big\{ \sup_{x > x_0} \int_{y_0}^{\infty} |K(x, y)| dy + \sup_{y > y_0} \int_{x_0}^{\infty} |K(x, y)| dx \Big\} \rightarrow 0$$

$$|||K|||(x_0, y_0) \stackrel{\text{onp}}{=} \Big\{ \sup_{x > x_0} \int_{y_0}^{\infty} |K(x, y)| dx \Big\} \rightarrow 0$$

$$|||K|||(x_0, y_0) \stackrel{\text{onp}}{=} \Big\{ \sup_{x > x_0} \int_{y_0}^{\infty} |K(x, y)| dx \Big\} \rightarrow 0$$

Функцию K назовем регулярным дифференцируемым ядром, если производные от K также являются регулярными ядрами.

 Π емма 1. Предположим, что регулярные дифференцируемые ядра $\chi(t)$, $\psi(t)$, зависящие непрерывно дифференцируемым образом от параметра t, связаны уравнением (4). Тогда в обозначениях формулы (5) $L\chi=0 \Leftrightarrow L\psi=0$.

При заданном ψ соотношение (4) является вольтерровым уравнением относительно χ. При заданном χ уравнение (4) теряет вольтерров харак-

тер и превращается в уравнение типа Винера — Хопфа

$$(1+\hat{\chi}(t,x))f(y)=g(y)\text{ при }y>x,\quad \hat{\chi}(t,x):f\leadsto \int_{x}^{\infty}f(s)\chi(t,s,y)\,ds. \tag{7}$$

Оператор, переводящий решение u(t,x) нелинейного уравнения в решение v(t,x) линейного уравнения, является произведением двух вольтерровских:

$$u(t,x) \stackrel{V_1}{\leadsto} \varphi(t,x,y) \stackrel{V_2}{\leadsto} \chi(t,x,y) \leadsto v(t,x) = \frac{d}{dx} \chi(t,x,x). \tag{8}$$

Здесь оператор V_2 действует в пространстве регулярных ядер и, по определению, переводит заданное ядро ψ в решение χ вольтерровского уравнения (4). Оператор V_4 переводит заданную на прямой функцию u(x) такую, что при некотором $a > -\infty$

$$\int_{a}^{\infty} \left\{ \left| xu(u) \right| + \sum_{k=0}^{m} \left| D^{k}u(x) \right| \right\} dx < \infty$$
 (9)

в регулярное ядро ф, которое определяется как решение задачи Гурса:

$$\widetilde{L}\psi=0,\quad \frac{d}{dx}\,\psi(x,x)=u\,(x).$$

В случае уравнения Кортевега — де Фриса

$$u_t + u_{xxx} + 12uu_x = 0 (10)$$

роль оператора L в задаче Гурса играет оператор L_2 (см. (3)):

$$\widetilde{L}_2 \psi \equiv [D_1^2 - D_2^2 + 2u(t, x)] \psi(t, x, y) = 0, \quad \psi(t, x, x) = -\int_x^\infty u(t, s) ds.$$
 (11)

В случае (1) в качестве L нужно выбрать $L_2 + L_0$. Доказательство раз-

решимости задачи Гурса (11) приведено в книге (3), стр. 121.

Теорема 1. Пусть в области $\Omega = \{(t,x) \colon 0 \le t \le T, \ x > \omega(t) \ge \ge -\infty\}$ задано решение u(t,x) уравнения (10), удовлетворяющее условиям (9) при m=3 равномерно по $t \in [0,T]$. Тогда замена (8) переводит это решение в функцию v(t,x) из того же класса, которая в области Ω является решением линейного уравнения $v_t + v_{xxx} = 0$.

Схема доказательства. В силу леммы 1 и определения (11) оператора V_4 для доказательства теоремы достаточно проверить, что

 $(D_0+4L_3)\psi=0$. Из формулы (5) получаем, что регулярное ядро $\phi=(D_0+4L_3)\psi$ удовлетворяет уравнению $L_2\phi+2u\phi=0$. Вычислив значения производных от решения задачи Гурса (11) на характеристике $\{y=x\}$, находим, что

$$(D_1\psi + \frac{1}{2}\psi^2)(t, x, x) = \frac{1}{2}u(t, x), \quad 4\widetilde{L}_3\psi(t, x, x) = (D_1^2u + 6u^2)(t, x). \tag{12}$$

Легко видеть теперь, что из уравнения Кортевега — де Фриса следует, что $\varphi(t, x, x) = 0$ и, в силу единственности решения задачи Гурса, $\varphi \equiv 0$.

Рассмотрим далее детально вопрос об обращении замены (8) в случае уравнения Кортевега — де Фриса. В рассматриваемом случае $\chi(t,x,y)=\chi(t,x+y)$, что позволяет отождествить v и χ . При этом мы получаем

$$(D_0 + 8D_1^3) \chi(t, x) = 0. (13)$$

Пусть при $t\geqslant 0$ задано решение линейного уравнения v(t,x), удовлетворяющее условиям (9) равномерно по $t\in [0,T]$. Тогда существует область Ω вида, указанного в теореме 1, такая, что оператор (7) $\chi(t,x)$ имеет при $(t,x)\in \Omega$ норму в $L_1(x,\infty)$, меньшую 1. Можно убедиться (см. лемму 1 и (12)), что обращение замены (8) приводит к решению уравнения (10), определенному в области Ω . Таким образом, оператор, обратный к (8), переводит решения линейного уравнения Кортевега — де Фриса, но может сузить область определения решения. Рассмотрим, например, фундаментальное решение задачи Коши для уравнения (13):

$$\mathscr{E}(t,x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i(8\xi^{3t} + \xi x)} d\xi = \frac{1}{t^{1/3}} \Phi\left(\frac{x}{2t^{1/3}}\right),$$

$$\Phi(x) \simeq \frac{(x/3)^{-1/3}}{8\sqrt{3\pi}} e^{-2(x/3)^{3/2}} \text{ при } x \to +\infty.$$
(14)

Замена, обратная к (8), переводит $\chi(t,x) = \varkappa \mathcal{E}(t,x)$ в автомодельное (см. ниже лемму 2) решение $t^{-2/3}f(x/t^{1/3})$ уравнения Кортевега — де Фриса. При этом функция f определяется как решение нелинейного дифференциального уравнения с заданной асимптотикой

$$f''' - \frac{1}{3}xf - \frac{2}{3}f + 12ff' = 0, \quad f(x) \simeq -\kappa \Phi'(x) \text{ при } x \to +\infty.$$
 (15)

 Π е м м а 2. Пусть $\chi(t, x, y) = \varkappa \mathcal{E}(t, x + y)$, тогда уравнение (4) однозначно разрешимо в классе ядер регулярных для $x, y > l(\varkappa)t^{\gamma_5}$, причем $l(\varkappa) < -1$ при $|\varkappa| \le 1$. Решение ψ является в этом случае автомодельным:

$$\psi(t, x, y) = \frac{1}{t^{i/s}} \widetilde{\Phi}\left(\frac{x}{t^{i/s}}, \frac{y}{t^{i/s}}\right), \ \ \partial e \ \widetilde{\Phi}(x, y) + \varkappa \Phi\left(\frac{x+y}{2}\right) + \varkappa \int_{x}^{\infty} \widetilde{\Phi}(x, s) \Phi\left(\frac{s+y}{2}\right) ds = 0.$$

$$(16)$$

Теорема 2. Задача Коши для уравнения (10) однозначно разрешима в пространстве $C^i([0,\infty);S)$. Здесь S- пространство Шварца быстро убывающих гладких функций и для ее решения u(t,x) в области $\{(t,x):x>-t^b\}$ справедливо асимптотическое представление в виде конечной суммы частных решений уравнения Кортевега—де Фриса типа бегущей волны:

$$\sup_{x > -t^{1/s}} \left| u\left(t,x\right) - \sum_{k=1}^{N} u_k\left(x - 4\lambda_k^2 t\right) \right| \leq \frac{\mathrm{const}}{t^{2/s}} \quad \text{при } t \to \infty.$$

Здесь через λ_h^2 , $k=1,\ldots,N$, обозначены собственные значения оператора $A=d^2/dx^2+q(x),\ q(x)=2u(0,x),\ в\ L_2(-\infty,+\infty).$

Схема доказательства. По начальным данным $u_{0}(x)=u(x,0)$ для уравнения (10) находим (см. теорему 1) начальные данные $\chi^{0}=$

 $=V_2V_4u^0$ для уравнения (13). В теории рассеяния для оператора Штурма — Лиувилля установлено (см. (5)), что χ^0 допускает представление в виде

$$\chi^{0}\left(x
ight)=rac{1}{2\pi}\int\limits_{-\infty}^{+\infty}
ho\left(\xi
ight)e^{i\xi x}d\xi+\sum_{k=1}^{N}c_{k}e^{-\lambda_{k}x},c_{k}>0,$$

где, как это ни странно,

$$|\rho(\xi)| < 1 \text{ при } \xi \neq 0, \quad |\rho(0)| = 1 \Rightarrow \rho(0) = -1.$$
 (17)

Легко убедиться (см. (5)), что условия (17) обеспечивают обратимость оператора (7) $1+\hat{\chi}(0,x)$ при любом x. Решая линейное уравнение (13) находим, что

$$\chi(t,x) = \chi_1(t,x) + \sum_{k=1}^{N} c_k e^{8\lambda_k^3 t} e^{-\lambda_k x}, \quad \chi_1(t,x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \rho(\xi) e^{i(8\xi^3 t + \xi x)} d\xi, \quad (18)$$

и, следовательно, условия (17) выполняются при всех t > 0. Для доказательства теоремы существования остается проверить, что $u^0 \in S \Leftrightarrow \rho \in S$ и удовлетворяет условиям (17).

Лемма 3. Часть решения, соответствующая непрерывному спектру оператора A, допускает асимптотическое представление через функцию дйри (14)

$$\left|\chi_1(t,x) - \frac{\varkappa}{t^{1/a}} \Phi\left(\frac{x}{2t^{1/a}}\right)\right| \leqslant \frac{1}{t^{2/a}} K\left(\frac{x}{t^{1/a}}\right), \quad K \in L_1(0,\infty), \tag{19}$$

где $\varkappa = \rho(0)$ и, следовательно, $|\varkappa| \le 1$. Справедливы также оценки, полученные формальным дифференцированием соотношения (19).

Из лемм 2 и 3 нетрудно получить теперь асимитотическое представление для решения $\psi_1 = V_2^{-1} \chi_1$ уравнения (4) через автомодельное решение (16):

$$\left| \psi_1(t, x, y) - \frac{1}{t^{1/s}} \widetilde{\Phi}\left(\frac{x}{t^{1/s}}, \frac{y}{t^{1/s}}\right) \right| \leqslant \frac{1}{t^{2/s}} \widetilde{K}\left(\frac{x}{t^{1/s}}, \frac{y}{t^{1/s}}\right), \quad x, y > -t^{1/s},$$

где K— регулярное ядро. Отсюда следует утверждение теоремы, если предположить дополнительно, что оператор A не имеет собственных значений. Доказательство теоремы в общем случае проводится индукцией по числу собственных значений оператора A и основано на следующей лемме, позволяющей явно вычислить добавок от введения нового собственного значения

Лемма 4. Пусть решения χ , χ вида (18) линейной задачи связаны соотношением $\chi = \chi + ce^{8\lambda^3 t}e^{-\lambda x}$; $c, \lambda > 0$. Тогда соответствующие решения уравнения Кортевега — де Фриса связаны формулой

$$\widetilde{u}(t,x) = u(t,x) - \frac{d}{dx} \frac{c\psi_{\lambda}^{2}(t,x)}{1 + c\int_{\lambda}^{\infty} \psi_{\lambda}^{2}(t,s) ds},$$

$$\psi_{\lambda}(t,x) = e^{4\lambda^3 t} \left(e^{-\lambda x} + \int_{x}^{\infty} \psi(t,x,s) e^{-\lambda s} ds. \right)$$

х $3 {\partial e c b} \ {\partial d p o} \ \psi$ соответствует невозмущенному решению $\psi = {V_2}^{-1} \chi$. Институт гидродинамики Поступило Сибирского отделения Академии наук СССР 13 XII 1972 Новосибирск

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. Gardner, J. Green et al., Phys. Rev. Lett., 19, 1095 (1967). ² В. Е. Захаров, Л. Д. Фаддеев, Функциональный анализ, 5, в. 4, 18 (1971). ³ В. А. Марченко, Спектральная теория операторов Штурма — Лиувилля, Киев, 1972. ⁴ Ю. А. Березин, В. И. Кариман, ЖЭТФ, 46, 1880 (1964). ⁵ Л. Д. Фаддеев, Тр. Матем. инст. им. Стеклова АН СССР, 73, 314 (1964).