УДК 543.422.4+541.571.9+577.26.118

RUMUX

Р. Р. ШАГИДУЛЛИН, И. П. ЛИПАТОВА, И. А. НУРЕТДИНОВ, С. А. САМАРЦЕВА

ВОДОРОДНАЯ СВЯЗЬ С УЧАСТИЕМ Р = Se- И Р = Те-ГРУПП

(Представлено академиком Б. А. Арбузовым 20 III 1973)

Известно, что фосфорильная и тиофосфорильная группировки участвуют в водородных связях, выступая в роли донора электронов. Прочность этих H-связей существенно зависит от природы заместителей при атоме фосфора (1-3). Сведения об участии селено- и теллурофосфорильных группировок в H-связях очень ограничены (4, 5). Поэтому изучение H-комплексов с P=X-группой (X=Se, Te) представляет интерес как для расширения исследований в области H-связей, так и для выяснения влияния электронных эффектов заместителей на природу связей P=Se и P=Te.

Нами была изучена электронодонорная способность группировки P=X, (X=Se, Te) в соединениях вида $R_1R_2R_3P=X$, где R_1 , R_2 , R_3 — Me, Et, Bu, Ph, EtO, EtS, PhO, Me₂N, Et₂N, Cl (для X=Se) и Me, Me₂N, Et₂N (для X=Te). Мерой электронодонорной способности служили спектральные изменения, происходящие при образовании водородной связи с OH-группой

фенола.

В и.-к. спектрах тройных систем — фенол + фосфорорганическое соединение + CCl₄, наряду с полосой «свободных» колебаний ОН-групп фенола (3611 см-1), в длинноволновой области спектра наблюдаются широкие интенсивные полосы, обусловленные существованием в растворах Н-комплексов. Во всех изученных соединениях (кроме № 1, см. табл. 1) акцептором протона могут выступать как группировка Р=Х, так и заместители при атоме фосфора. Однако результаты измерений и.-к. спектров растворов при различных концентрациях компонентов показали, что в них образуются Н-связи между ОН-группой фенола в качестве донора протона и Р=Х-группировкой — в роли акцептора: C_6H_5OH ... X=P (в пользу такого отнесения говорит также наличие корреляции между $-\Delta H$ и константами заместителей при атоме фосфора). Следует отметить в связи с этим, что наблюдавшиеся ранее в спектрах растворов тиофосфорильных соединений дополнительные полосы, отнесенные к ассоциатам типа $-\mathrm{OH} \ldots \mathrm{X} \to \mathrm{P}{=}\mathrm{S}$ (где $X = OR, NR_2$) (3), как показали дальнейшие исследования, в действительности обусловлены водородными связями с примесным фосфорильным кислородом. Наличие даже малейших загрязнений последним (что часто трудно избежать) мешает установлению истинной картины.

Частоты максимумов поглощения ОН-групп в Н-комплексах ОН ... X= =P (, а следовательно, и прочность образуемых водородных связей зави-

сят от заместителей при атоме фосфора.

В табл. 1 приведены смещения частот ОН-групп ($\Delta v = 3611 - v_{\text{он...x=p}}$, см⁻¹), энтальнии образования водородных связей ($-\Delta H$, ккал/моль), рассчитанные по методу (6), и факторы основности (E_j), характеризующие энергетическую способность данного основания к образованию Н-связей с любой кислотой (7).

Из данных табл. 1 видно, что для селенофосфорильных соединений Δv $(-\Delta H, E_i)$ зависят от окружения атома фосфора. Так, энтальпия обра-

№N9 п.п.	Соединение *	Δν	$-\Delta H$	E_{i}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$ \begin{array}{l} (C_4H_9)_3P(Se) \\ [(C_2H_5)_2N]_3P(Se) \\ (C_2H_5)_2N]_3P(Se) \\ (C_2H_5)_2P(Se)[N(CH_3)_2]_2 \\ (C_2H_5)_2P(Se)[N(CH_3)_2] \\ [(CH_3)_2N]_3P(Se) \\ [(C_2H_5)_2P(Se)OC_2H_5 \\ (C_2H_5)_2P(Se)OC_6H_5 \\ [(C_2H_5)_2P(Se)OC_6H_5 \\ [(C_2H_5)_2P(Se)SC_2H_5 \\ (C_2H_5)_2P(Se)SC_2H_5 \\ (C_6H_5)_3P(Se) \\ (C_2H_5)_3P(Se) \\ (C_2H_5O)_3P(Se) \\ (C_2H_5C)_3P(Se) \\ (C_2H_5C)_3P(Se) \\ (C_2H_5C)_2P(Se)C_2 \\ [(C_2H_5C)_2N]_3P(Te) \\ (C_2H_5C)_2N]_3P(Te) \\ [(C_2H_5)_2P(Te)[N(C_2H_5)_2]_1 \\ [(C_3H_5)_2N]_3P(Te) \end{array} $	300 300 291 291 281 280 261 250 244 241 201 166 461 300 281	5,66 55,55 55,44 55,44 55,44 6,09 6,43 55,43	1,06 1,06 1,04 1,04 1,02 1,02 0,98 0,96 0,96 0,92 0,87 0,75 0,74 1,06 1,02 1,00

^{*} Синтез соединений осуществлен аналогично описанному (Е-12).

зования Н-связи меняется в интервале 5,6—3,9 ккал/моль. Это свидетельствует о зависимости электронодонорной способности Р=Se-группы от природы заместителей *. Величина $-\Delta H$ была сопоставлена с различными константами заместителей ($\Sigma \sigma_i$ (13), $\Sigma \pi$ (14), $\Sigma \sigma^{\Phi}$ (15) и др.). Рансе Грамстад (2) показал, что при образовании Н-связи фенола с

Ранее Грамстад (2) показал, что при образовании Н-связи фенола с фосфорильными соединениями смещения частот $\Delta v_{\rm OH}$ коррелируют с константами Тафта σ^* заместителей при атоме фосфора. Нами также было

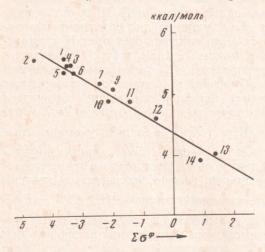


Рис. 1. Зависимость энтальнии образования H-связей $OH\dots Se=P$ от суммы констант Кабачника σ^{Φ} -заместителей (номера соответствуют соединениям в табл. 1). По оси ординат отложена величина ΔH

найдено, что для Н-комплексов фенола с фосфорильными и тиофосфорильными соединениями наблюдается удовлетворительная корреляция величины ΔH ($\Delta v_{\rm OH}$) с такими константами заместителей при атоме фосфора, как σ_i , σ^* , π , σ^Φ , хотя отдельные соединения выпадают из этой зависимости в силу резонансных и прочих эффектов (3 , 16).

Настоящее исследование показало, что прочность водородной связи фенола с селенофосфорильными соединениями также коррелирует с упомянутыми выше константами заместителей. В качестве примера на рис. 1 приведена зависимость ΔH от $\Sigma \sigma^{\Phi}$, для которой в данном случае наблюдается наилучший коэффициент корреляции

r=0.986. Полученные результаты представляют интерес с точки зрения проблемы влияния заместителей на природу P=Se-связи. Характер связи P=Se оказывается зависит от свойств заместителей, при этом влияние по-

^{*} Экспериментальные трудности не позволили исследовать более широкий круг соединений, содержащих группу P=Tе, поэтому мы считаем преждевременным делать выводы о влиянии заместителей на электронодонорную способность P=Tесвязи.

N.N.	$ m R_1R_2R_3$	X = 0	X = S	X = Se	X = Te
1 2 3 4 5	$ \begin{array}{c} (C_2H_5O)_3 \\ (C_2H_5)_2C_2H_5O \\ (C_6H_5)_3 \\ [(CH_3)_2N]_3 \\ [(C_2H_5)_2N]_3 \end{array} $	330 410 420 450 460	196 261 241 280	201 261 241 281 300	271 300

следних преимущественно индуктивное, хотя прочие эффекты также играют определенную роль. Было проведено сравнение электронодонорной способности P=X-группы, когда в качестве X выступали кислород, сера, селен и теллур.

В табл. 2 приведены смещения частот ОН-групп (Дуон...х) для некото-

рых соединений $R_1R_2R_3P = X$.

Видно, что замена в группе P=X кислорода на серу ведет к значительному ослаблению H-связи, что свидетельствует о меньшей электронодонорной способности тпофосфорильной группировки по сравнению с фосфорильной в аналогичном окружении. При переходе от серы к селену и теллуру смещения частот меняются незначительно. Следовательно, электронодонорная способность группировок P=S, P=Se, P=Te в H-связях весьма близка.

Таким образом, установлено, что селено- и теллурофосфорильные группировки участвуют в водородных связях в качестве акцептора протона, причем прочность H-связей зависит от электронных эффектов заместителей

при атоме фосфора.

Электронодонорная способность P=X-групп (X=0, S, Se, Te) в аналогичном окружении существенно уменьшается при замене кислорода на серу и мало меняется в ряду S-Se-Te.

Институт органической и физической химии им. А. Е. Арбузова Академии наук СССР Казань Поступило 18 II 1973

Казанский химико-технологический институт им. С. М. Кирова

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ U. Blindheim, T. Gramstad, Spectrochim. acta, 25, 1105 (1969).

² T. Gramstad, Spectrochim, acta, 20, 729 (1964).

³ P. P. III агидуллин, И. П. Липатоваидр., ДАН, 202, № 3 (1972).

⁴ E. B. Рыльцев, И. Е. Болдескулидр., Журн. прикл. спектроскоп., 86, 512 (1972).

⁵ И. П. Липатова, Р. Р. Шагидуллин и др., Сборн. по некоторым проблемам органической и физической химин, Казань, 1972, стр. 215.

⁶ A. B. Иогансен, Б. Ф. Рассадин, Журн. прикл. спектроскоп., 11, 328 (1968).

⁷ A. B. Иогансен, Теоретич. и эксп. хим., 7, 303 (1971).

⁸ Н. П. Гречкин, И. А. Нуретдинов и др., Тр. IV конфер. по химин и применению фосфорорганических соединений, М., 1972, 350.

⁹ И. А. Нуретдинов, Н. П. Гречкин, Изв. АН СССР, сер. хим., 1969, 1912.

¹⁰ E. Gryszkiewicz-Trochimowski, J. Quinchon, O. Gryszkiewicz-Trochimowski, Bull. Soc. chim. France, 1960, 1794.

¹¹ И. А. Нуретдинов, Н. П. Гречкин, Н. А. Буина. Изв. АН СССР, сер. хим., 1969, № 1.

¹² И. А. Нуретдинов, Н. А. Буина и др., Тез. докл. V Всесоюзн. конфер. по химин фосфорорганических соединений, М., 1972, 152.

¹³ G. Е. Масіеl, J. Ат. Сhem. Soc., 86, 1269 (1964).

¹⁴ L. C. Thomas, R. А. Chittender, Spectrochim. acta, 20, 467 (1964).

¹⁵ T. А. Мастрюкова, М. И. Кабачник, Усп. хим., 28, 40, 4751 (1969).

¹⁶ P. P. III агидуллин, Тез. докл. V Всесоюзн. конфер. по химин ФОС, М., 1972, стр. 228.