Доклады Академии наук СССР 1973. Том 211, № 4

УДК 66.012.1

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Член-корреспондент АН СССР В. В. КАФАРОВ, И. Н. ДОРОХОВ, А. Н. СПИРИДОНОВ

НОВЫЙ МЕТОД ИДЕНТИФИКАЦИИ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ПРОЦЕССОВ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Идентификация математического описания объекта, или решение обратной задачи, является основным этапом в построении адекватной математической модели процесса и поэтому представляет собой одну из центральных задач в области математического моделирования химико-технологических процессов. Построение адекватной модели технологического процесса предполагает адекватное отражение гидродинамической структуры потоков в аппарате и адекватное описание кинетики процесса. В настоящее время решение первой задачи сводится в основном к обработке кривых отклика системы на типовое (импульсное, ступенчатое, гармоническое) или произвольное (детерминированное, случайное) возмущение по концентрации индикатора в потоке с использованием методов теории линейных систем автоматического регулирования. Эти методы ограничиваются линейным случаем и не пригодны для решения нелинейных задач. Решение задачи идентификации линейных кинетических уравнений не представляет математических трудностей и ограничивается в основном использованием аппарата линейной элгебры. Идентификация нелинейных кинетических уравнений обычно проводится в два этапа: 1) получение предварительных (нулевых) оценок кинетических констант; 2) уточнение кинетических констант. В настоящее время в литературе по химической кинетике получили распространение два способа уточнения кинетических констант. Первый способ состоит в приведении дифференциальных кинетических уравнений к системе нелинейных алгебраических уравнений с последующей минимизацией среднеквадратичного критерия одним из методов нелинейного программирования, что в терминах современной теории динамических систем означает сведение динамической задачи идентификапии к статической задаче наблюдения. При этом оперирование со скоростями химических реакций как с параметрами в статической задаче наблюдения осложняется значительными ошибками, неизбежно возникающими при экспериментальном определении скоростей химических реакций. Второй способ состоит в минимизации среднеквадратичного критерия, в который входят не производные, а сами переменные состояния системы (концентрации, температуры и т. п). В этом случае возникает необходимость решать исходную систему нелинейных дифференциальных уравнений столько раз, сколько делается шагов при движении к оптимуму, причем число этих шагов может достигать нескольких сотен. Наконец, ни первый, ни второй способ решения не позволяют оценить точность, с которой определяются кинетические константы, так как сами минимизируемые критерии не включают в себя этих кинетических констант.

Отмеченные трудности в решении обратных задач химической технологии, на наш взгляд, объясняются не только сложностью моделируемых процессов, но также недостаточным использованием методов теории наблюдаемости, оценки переменных состояния и идентификации нелинейных динамических систем, которая в последние годы получила интенсивное развитие (1, 2). Цель настоящей работы состоит в том, чтобы показать возможность решения задачи идентификации математического описания

процесса на основе современной теории оптимальной фильтрации нелинейных динамических систем, функционирующих в условиях случайных помех, которые воздействуют как на самое систему, так и на средства измерения ее параметров.

Рассмотрим произвольный химико-технологический процесс, который протекает в условиях случайных помех V и характеризуется n-мерным вектором состояний $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathrm{T}}$, r-мерным вектором неизвестных параметров $\mathbf{b} = (b_1, b_2, \dots, b_r)^{\mathrm{T}}$, входящих в математическое описание про-

цесса; m-мерным вектором наблюдений $\mathbf{y} = (y_1, y_2, \dots, y_m)^\mathsf{T}$, причем на показания измерительных приборов накладывается шум W. В соответствии с современной теорией динамических систем математическая модель процесса в задаче идентификации представляется в виде системы уравнений состояния и наблюдения:

$$x = f(x, b, t) + V,$$

 $y = g(x) + W,$
(1)

где f, g — в общем случае нелинейные векторфункции, вид которых определяется спецификой процесса; V, W — некоррелированные между собой случайные процессы (центрированный гауссов белый шум). Постановка задачи идентификации: при заданном начальном векторе состояния $\mathbf{x}(t_0) = \mathbf{x}_0$, векторе нулевых оценок искомых констант $\mathbf{b}_0 = (b_{10}, b_{20}, \ldots, b_{r0})^T$ и значениях вектора наблюдения \mathbf{y} в дискретные моменты времени $\mathbf{y}(t_0)$, $\mathbf{y}(t_1)$,..., $\mathbf{y}(t_N)$ требуется получить оптимальную в смысле среднеквадратичного критерия оценку $\hat{\mathbf{b}}$ вектора искомых констант \mathbf{b} в указанные моменты времени t_0, t_1, \ldots, t_N .

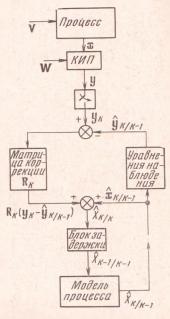


Рис. 1. Блок-схема работы фильтра в режиме идентификации (или адаптации модели к процессу)

Сведем задачу идентификации к ранее рассмотренной нами задаче оценки переменных состояния динамической системы (3). Примем искомые константы за дополнительные переменные состояния $x_{n+1} = b_1, \ x_{n+2} = b_2, \dots, \ x_{n+r} = b_r$, так что вместо вектора $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathrm{T}}$ мы будем рассматривать расширенный вектор состояний $\mathbf{x} = (x_1, x_2, \dots, x_n, x_{n+1}, \dots, x_{n+r})^{\mathrm{T}}$, и вместо системы (1) мы получим уравнения состояния в виде

$$\dot{\widetilde{\mathbf{x}}} = \widetilde{\mathbf{f}}(\widetilde{\mathbf{x}}, t) + \mathbf{V},
\widetilde{\mathbf{y}} = \widetilde{\mathbf{g}}(\widetilde{\mathbf{x}}) + \mathbf{W},$$
(2)

где $f_i = f_i$ при $i = 1, 2, \ldots n$; $\tilde{f}_i = 0$ при $i = n+1, \ldots, n+r$; $\tilde{y}_i = y_i$ при $i = 1, 2, \ldots m$; $\tilde{y}_i = 0$ при $i = m+1, \ldots, n+r$; $\tilde{g}_i = g_i$ при $i = 1, 2, \ldots m$; $\tilde{g}_i = 0$ при $i = m+1, \ldots, m+r$; t = 1 нак транспонирования. Таким образом, задача идентификации сводится к задаче оценки переменных состояния в условиях неполного наблюдения: при заданном начальном векторе состояния $\tilde{\mathbf{x}}(t_0) = \tilde{\mathbf{x}}_0$ и значениях вектора наблюдения $\tilde{\mathbf{y}}$ в дискретные моменты времени $\tilde{\mathbf{y}}(t_0), \ldots, \tilde{\mathbf{y}}(t_N)$ требуется получить оптимальную в смысле среднеквадратичного критерия оценку $\tilde{\mathbf{x}}$ вектора состояния $\tilde{\mathbf{x}}$ в указанные моменты времени t_0, t_1, \ldots, t_N . Метод решения этой задачи, основанный на применении расширенного дискретного фильтра Калмана, изложен нами в работе (3). Блок-схема работы фильтра в режиме идентификации (или адаптации модели к процессу) представлена на рис. 1.

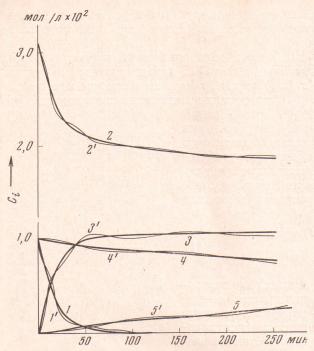


Рис. 2. Результаты расчета задачи оценки: $1 - C_1(t)$; $2 - C_2(t)$; $3 - C_3(t)$; $4 - C_4(t)$; $5 - C_5(t)$. $1' - \hat{C}_1(t)$; $2' - \hat{C}_2(t)$; $3' - \hat{C}_3(t)$; $4' - \hat{C}_4(t)$; $5' - \hat{C}_5(t)$

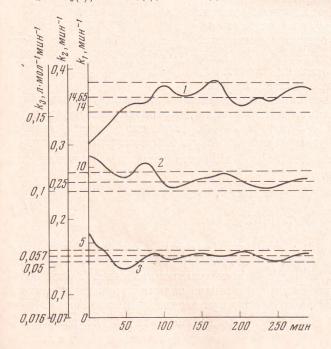


Рис. 3. Результаты расчета задачи идентификации: $1-x_6=k_1;\ 2-x_7=k_2;\ 3-x_8=k_3$

В качестве примера рассмотрим задачу опрелеления кинетических констант реакции 8 - бром -5-нитро-1-нафтойной кислоты с гидроксил-ионом. Взаимодействие 8-галоген-5 -нитро -1 -нафтойной кислоты с водным раствором едкого натра, приводящее к образо-8-окси-5-нитрованию 1-нафтойной кислоты, подвержено сильному каталитическому влиянию соединений меди:

$$X$$
 COO-
 $+$ HO COO-
 $+$ OH- Cu^{2+} $+$ X^- ,

где X = Cl, Br. Согласно механизму, установленному В. А. Шульчишиным, кинетические уравнения реакции имеют вид:

$$\frac{dC_1}{dt} = -\frac{k_1 C_1 C_4}{1 + K C_2} - \frac{K k_2 C_1 C_2 C_4}{1 + K C_2},$$

$$\frac{dC_2}{dt} = -\frac{d(C_3 + 2C_5)}{dt} - \frac{d}{dt} \frac{K C_2 C_4}{1 + K C_2},$$

$$\frac{dC_3}{dt} = -\frac{dC_1}{dt}, \quad (3)$$

$$\frac{dC_4}{dt} = -k_3 C_2 C_4,$$

$$\frac{dC_5}{dt} = -\frac{dC_4}{dt},$$

где C_1 — концентрация 8 -бром-5-нитро-1 -наф-тойной кислоты; C_2 — концентрация едкого

натра; C_3 — концентрация 8-окси-5-нитро-1-нафтойной кислоты; C_4 — концентрация внесенного катализатора $Cu(En)_2SO_4$; C_5 — концентрация побочного продукта $Cu(En)_2(OH)_2$; K — константа равновесия, равная

Начальная кон- центрация, мол/л	$C_1(0) = 1,04 \cdot 10^{-2}; C_2(0) = 3,132 \cdot 10^{-2}; C_3(0) = 0; C_4(0) = 1,006 \cdot 10^{-2}; C_5(0) = 0$									
Время, мин. Конверсия по С ₁ , %	1 7,0	$\frac{2}{15,3}$	3 22,1	4 30,8	5 37,5	7 50,1	9 60,4	11 68,9	13 75,6	15 85 ,4
Начальная кон- центрация, мол/л	1-3(-)									
Время. мин. Конверсия по C ₁ , %	5 11,5;	10 21,0	15 30,5	20 38,5	25 46,3	30 53,5	40 65,7	50 73,2	60 78,7	75 80,0
Начальная кондентрация, мол/л $C_1(0) = 1,02 \cdot 10^{-2}$; $C_2(0) = 20,62 \cdot 10^{-2}$; $C_3(0) = 0$; $C_4(0) = 1,006 \cdot 10^{-2}$ $C_5(0) = 0$										
Время, мии. Конверсия по C ₁ , %	10 10,7	20 21,4	30 31,8	40 42,3	50 52,0	60 58,6	70 63,7	80 63,7	100 72,5	130 77,5

 $55 \text{ л} \cdot \text{мол}^{-1}$; k_1, k_2, k_3 — константы скорости, подлежащие определению. Для решения задачи идентификации введем следующие переменные состояния: $x_1 = C_1$, $x_2 = C_2$, $x_3 = C_3$, $x_4 = C_4$, $x_5 = C_5$, $x_6 = k_1$, $x_7 = k_2$, $x_8 = k_3$. В принятых переменных система (3) приводится к каноническому виду (2), и задача идентификации сводится к задаче оценки в условиях неполного наблюдения: в кинетических экспериментах осуществлялась возможность измерения только концентраций C_1 , C_2 , C_3 . Начальные значения координат расширенного вектора состояния системы, при которых решалась задача идентификации, и соответствующие экспериментальные значения конверсии приведены в табл. 1. В качестве нулевых оценок вектора кинетических констант использовались $k_1^0 = 11,5\,$ мин $^{-1};~k_2^0 = 0,28\,$ мин $^{-1};~k_3^0 =$ = 0,072 л/мол мин, а допустимый диапазон неопределенности модели составлял 10%. Задача решалась на ЦВМ «Минск-22». Алгоритм и программа расчета основаны на применении расширенного дискретного фильтра Калмана для решения задач оценки (3). При расчете была принята следующая структура матриц ковариации ошибок:

$$\begin{split} \mathbf{M}_{h} &= \mathrm{Diag} \ (1 \cdot 10^{-2} \ 1 \cdot 10^{-2} \), \\ \mathbf{S}_{h} &= \mathrm{Diag} \ (5 \cdot 10^{-3} \ 5 \cdot 10^{-3} \), \\ \mathbf{L}_{0}/_{-1} &= \mathrm{Diag} \ (0,1 \ 0,1 \ 0,1 \ 0,1 \ 0,1 \ 1 \cdot 10^{-2} \ 1 \cdot 10^{-2} \ 1 \cdot 10^{-2}). \end{split}$$

Результаты расчета приведены на рис. 2 и 3. Из рис. 2 видно, что качество оценки ненаблюдаемых концентраций веществ, участвующих в реакции, весьма удовлетворительное (ошибка не превышает 4%). Характер сходимости оцениваемых значений кинетических констант к истинным значениям, представленный на рис. 3, оставался практически идентичным для всех групп начальных условий, приведенных в табл. 1. Последнее служит подтверждением правильности обоснованного ранее механизма реакции.

Московский химико-техпологический институт им. Д. И. Менделеева

Поступило 25 I 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Р. Калман, П. Фалб, М. Арбиб, Очерки по математической теории систем, М., 1971. ² А. Брайсон, Хо Ю Ши, Прикладная теория оптимального управления, М., 1972. ³ В. В. Кафаров, И. Н. Дорохов, А. Н. Спиридопов, ДАН, 211, № 2 (1973).