УДК 517.43+513.881

MATEMATUKA

С. Г. КРЕЙН, С. Я. ЛЬВИН

ОБЩАЯ НАЧАЛЬНАЯ ЗАДАЧА ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ В БАНАХОВОМ ПРОСТРАНСТВЕ

(Представлено академиком И.Г. Петровским 1 XI 1972)

1°. Рассмотрим дифференциальное уравнение

$$L(d/dt)u = 0, \quad 0 \le t < \infty, \tag{1}$$

где u(t) — искомая функция со значениями в банаховом пространстве E, а $L(\lambda) = \sum_{i=0}^m \lambda^i L_i$ — полином, коэффициенты которого являются ограни-

чепными операторами в E.

Для уравпения (1) ставится задача о нахождении решения, удовлетворяющего начальному условию вида

$$S(d/dt)u|_{t=0} = \psi, \tag{2}$$

где ψ — заданный элемент банахова пространства F, а $S(\lambda) = \sum\limits_{i=-\infty}^n \lambda^i S_i$ —

полипом с ограниченными операторными коэффициентами, действующими

из пространства E в пространство F.

Основное предположение состоит в том, что при достаточно больших $|\lambda|$ оператор $L(\lambda)$ имеет ограниченный обратный оператор $L(\lambda)^{-1}$, причем справедливо сходящееся разложение

$$L(\lambda)^{-1} = \sum_{-\infty}^{l} \lambda^{i} D_{i}, \tag{3}$$

где D_i — ограниченные операторы в пространстве E. Заметим, что разложение (3) заведомо будет иметь место, если оператор L_m , стоящий при наивысшей степени λ^m в полиноме $L(\lambda)$, имеет ограниченный обратный.

Определение 1. Функционал $f \in F^*$ называется стирающим для задачи (1), (2), если при всяком $x \in E$ функция $f(S(\lambda)L(\lambda)^{-1}x)$ совпадает в области $\mathfrak A$ аналитичности функции $L(\lambda)^{-1}$ с некоторой целой функцией.

Из разложения (3) видно, что для стирающего функционала функция

 $f(S(\lambda)L(\lambda)^{-1}x)$ будет полиномом.

Теорема 1. Для того чтобы задача (1), (2) при заданном ψ была разрешимой, необходимо, чтобы выполнялись условия $f(\psi) = 0$ для всех

стирающих функционалов задачи (1), (2).

Для того чтобы задача (1), (2) была разрешимой для плотного в пространстве F множества правых частей ψ , необходимо и достаточно, чтобы единственным стирающим функционалом задачи (1), (2) был нулевой функционал.

Следствие. Если выполнены условия: 1) $||S(\lambda)L(\lambda)^{-1}|| \to 0$ при $|\lambda| \to \infty$ и 2) объединение областей значений операторов $S(\lambda)$ при $\lambda \in \mathfrak{A}$ плотно в F, то задача (1), (2) разрешима для плотного в пространстве F множества правых частей ϕ .

Нетрудно проверить, что в конечномерном случае условие отсутствия ненулевых стирающих функционалов эквивалентно так называемым усло-

виям дополнительности (для убывающих решений см., например, $\binom{1}{1}$). В этом случае они естественно являются условиями того, что задача $\binom{1}{1}$, $\binom{2}{1}$ разрешима при любой правой части из F.

Опишем основные этапы доказательства теоремы 1. Сначала рассматривается простейшее дифференциальное уравнение

$$A du / dt = u, \quad 0 \le t < \infty, \tag{4}$$

в предположении, что при достаточно больших $|\lambda|$ имеет место разложение

$$(\lambda A - I)^{-1} = \sum_{-\infty}^{k-1} \lambda^i A_i, \tag{5}$$

где A_i — ограниченные в пространстве E операторы. Условие (5) эквивалентно тому, что резольвента оператора A имеет в нуле полюс порядка k. В этом случае (см. $(^2)$) все пространство E разлагается в прямую сумму $E=N \dotplus M$ инвариантных относительно оператора A подпространств N и M, причем $A^h=0$ на подпространстве N, а на подпространстве M оператор A имеет ограниченный обратный. Обозначим через P и Q проекторы, отвечающие разложению $E=N \dotplus M$.

Уравнение (4) при описанных выше условиях на оператор A исследовалось в (3). Там было показано, что все решения уравнения лежат в под-

пространстве М и могут быть представлены в виде

$$u(t) = e^{Ct}u_0, (6)$$

где $u_0 \in M$, оператор $C = (AQ + P)^{-1}$. Подставляя это общее решение в условие (2), мы приходим к уравнению

$$S(C) Qu_0 = \sum_{i=0}^{n} S_i C^i u_0 = \psi$$
 (7)

для начального значения и₀ искомого решения задачи (4), (2). Оператор, стоящий слева в (7), можно представить в виде

$$S(C) Q = \frac{1}{2\pi i} \int_{\mathcal{D}} S(\lambda) (\lambda A - I)^{-1} A Q d\lambda, \tag{8}$$

где Γ — контур, окружающий спектр оператора ($\lambda A-I$)⁻¹. В подпространстве N функция ($\lambda A-I$)⁻¹ является полиномом, поэтому интеграл, аналогичный (8), в котором проектор Q заменен на P, равен нулю. Значит,

$$S(C) Q = \frac{1}{2\pi i} \int_{\Gamma} S(\lambda) (\lambda A - I)^{-1} A \, d\lambda. \tag{9}$$

Если функционал $f \in F^*$ является стирающим для задачи (4), (2), то функция $f(S(\lambda)(\lambda A - I)^{-1}Ax)$ допускает голоморфиое внутри Γ расширение и поэтому, в силу (9), $f(S(C)Qu_0) = 0$ при любом u_0 , т. е. функционал f ортогонален к области значений оператор S(C)Q.

Обратно, пусть функционал $f = F^*$ ортогонален к области значений опе-

ратора S(C)Q. Воспользуемся тождеством Безу

$$S(\lambda) = B(\lambda) (\lambda I - C) + S(C),$$

где $B(\lambda)$ — полином степени n-1 с операторными коэффициентами. Применяя справа оператор $(\lambda I-C)^{-1}Q$, получаем

$$S(\lambda) (\lambda A - I)^{-1} A Q x = B(\lambda) Q x + S(C) Q (\lambda A - I)^{-1} A x, \quad x \in E.$$

По условию, функционал f обращается в нуль на втором слагаемом справа, поэтому $f(S(\lambda)(\lambda A-I)^{-1}AQx)$ в точках регулярности $(\lambda A-I)^{-1}$ совпадает с полиномом $f(B(\lambda)Qx)$. Элемент AQx пробегает все подпро-

странство M, поэтому $f(S(\lambda)(\lambda A - I)^{-1}y)$ — полином при любом $y \in M$. При $z \in N$ сама функция $S(\lambda)(\lambda A - I)^{-1}z$ является полиномом, следовательно, $f(S(\lambda)(\lambda A - I)^{-1}x$ — полином при любом $x \in E$ и функционал f стирающий.

Итак, теорема 1 доказана для уравнения (4). Переход от уравнения m-го порядка к уравнению первого порядка делается с помощью обычных замен. Рассматриваются пространство $G = E^m$, действующие в G опера-

торы

$$A(x_0, x_1, \ldots, x_{m-1}) = (x_0, x_1, \ldots, x_{m-2}, L_m x_{m-1}),$$

$$B(x_0, x_1, \ldots, x_{m-1}) = \left(x_1, x_2, \ldots, x_{m-1} - \sum_{i=0}^{m-1} L_i x_i\right)$$

и полином $T(\lambda)$ с ограниченными операторными коэффициентами, действующими из G в F, определенный равенством

$$T(\lambda)(x_0, x_1, \ldots, x_{m-1}) = S_0x_0 + S_1x_1 + \ldots + S_{m-2}x_{m-2} + \left(\sum_{i=m-1}^n \lambda^{i-m+1}S_i\right)x_{m-1}$$

Тогда задача (1), (2) в пространстве E эквивалентна задаче в пространстве G, определяемой уравнением

$$A \ dv/dt = Bv, \quad 0 \le t < \infty, \tag{10}$$

начальным условием

$$T(d/dt)v|_{t=0} = \psi. \tag{11}$$

При этом $v(t) = (u(t), du(t) / dt, \dots, d^{m-1}u(t) / dt^{n-1})$ Из разложения (3) следует разложение

$$(\lambda A - B)^{-1} = \sum_{i=1}^{k-1} \lambda^i Q_i, \quad k = l + m, \quad |\lambda| > c,$$

где Q_i — ограниченные операторы в G. Кроме того, область аналитичности функции $(\lambda A - B)^{-1}$ совпадает с областью $\mathfrak A$ аналитичности $L(\lambda)^{-1}$. При достаточно большом $|\lambda_0|$ существует обратный к оператору $B_0 = B - \lambda_0 A$. Тогда замена $v = e^{\lambda_0 t} w$ приводит задачу (10), (14) к виду

$$B_0^{-1}A \, dw/dt = w, \quad 0 \leqslant t < \infty, \tag{12}$$

$$T(d/dt + \lambda_0) w \big|_{t=0} = \psi. \tag{13}$$

Для оператора $B_{\scriptscriptstyle 0}{}^{\scriptscriptstyle -1} A$ справедливо разложение

$$(\lambda B_0^{-1}A-I)^{-1}=\sum\limits_{-\infty}^{k-1}\lambda^i H_i,\quad |\lambda|>c_1,$$

где операторы H_i являются линейными комбинациями операторов Q_iB_0 . Таким образом, мы свели задачу (1), (2) к ее простейшему частному виду.

Для доказательства теоремы 1 остается лишь проверить, что стирающие функционалы задачи (12), (13) совпадают со стирающими функционалами задачи (1), (2). Эта проверка здесь опускается.

2°. Рассмотрим теперь задачу (1), (2) с дополнительным условием на бесконечности

$$||u(t)|| \to 0$$
 npu $t \to \infty$. (14)

Определение. 2. Функционал $f \in F^*$ называется стирающим для задачи (1), (2), (14), если при любом $x \in E$ функция $f(S(\lambda)L(\lambda)^{-1}x)$ совпадает с некоторой аналитической в левой полуплоско-

сти функцией на пересечении $\mathfrak A$ -области аналитичности функции $L(\lambda)^{-1}$

с левой полуплоскостью $\text{Re }\lambda < 0$.

Теорема 2. Пусть оператор $L(\lambda)^{-1}$ ограничен во всех точках мнимой оси и при достаточно больших $|\lambda|$ для него справедливо разложение (3). Для того чтобы задача (1), (2), (14) была разрешимой при заданном $\psi \in F$, необходимо выполнение условий $f(\psi) = 0$ для всех стирающих функционалов задачи (1), (2), (14).

Для того чтобы задача (1), (2), (14) была разрешимой для плотного в F множества правых частей ψ , необходимо и достаточно, чтобы не было

ненулевых стирающих функционалов задачи (1), (2), (14).

Замечание. Теоремы 1 и 2 справедливы и в том случае, когда функция $S(\lambda)$ является целой функцией с ограниченными операторными коэффициентами. Это позволяет получить аналоги теорем 1 и 2 с мпоготочечными граничными условиями.

3°. Рассмотрим уравнение (1) с начальным условием Коши

$$d^k u / dt^k |_{t=0} = u_k, \quad k = 0, 1, \dots, m-1.$$
 (15)

T е о р е м а 3. Eсли $L(\lambda)^{-1}$ — мероморфная функция и справедливо разложение (3), то для разрешимости задачи Kоши (1), (15) для плотного в E^m множества наборов правых частей необходимо и достаточно, чтобы система собственных и присоединенных элементов операторного пучка $I-L(\lambda)$ была m-кратно полна в E (см. (5,6)).

 4° . Пусть $L(\lambda)^{-1}$ по-прежнему обладает разложением (3) и $\Phi(t)$ —

функция со значениями в Е. Рассмотрение неодпородного уравнения

$$L(d/dt)u = \Phi(t), \quad 0 \le t < \infty, \tag{16}$$

приводит к исследованию уравнения первого порядка

$$A dv / dt = v + \Phi_1(t), \quad 0 \le t < \infty, \tag{17}$$

в некотором банаховом пространстве N, в котором $A^h=0$. Можпо увидеть, что решение уравнения (17) существует и дается формулой

$$-v = \Phi_1 + \frac{d}{dt} \left(A \Phi_1 + \frac{d}{dt} \left(A^2 \Phi_1 + \ldots + \frac{d}{dt} \left(A^{k-1} \Phi_1 \right) \right) \ldots \right), \quad (18)$$

если все входящие в формулу (18) производные имеют смысл и полученная функция *v* дифференцируема. В противном случае решение уравнения (17) не существует. Учитывая это, для задачи (16), (2) можно доказать следующее утверждение.

Теорема 4. Пусть задача (1), (2) разрешима для плотного в F множества правых частей ψ . Тогда, если функция $\Phi(t)$ n, раз непрерывно дифференцируема, где $n_1 = \max\{m+l,n\}$, то задача (16), (2) также раз-

решима для плотного в F множества правых частей Ч.

Воропежский государственный университет им. Ленинского комсомола

Поступило 26 X 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Солонников, Тр. матем. инст. им. В. А. Стеклова, 33, 1 (1965). ² К. Иосида, Функциональный анализ, М., 1967. ³ С. Г. Крейн, В. Б. Осипов, Дифференциальные уравнения, 6, № 11, 2053 (1970). ⁴ В. П. Трофимов, Матем. иссл., 3, 117 (1968). ⁵ М. В. Келдыш, УМН, 26, № 4, 15 (1971). ⁶ И. Ц. Гох-берг, М. Г. Крейн, Введение в теорию линейных несамосопряженных операторов, «Наука», 1965.