УДК 519.21

MATEMATUKA

С. М. КРАСНИТСКИЙ

ОБ УСЛОВИЯХ ЭКВИВАЛЕНТНОСТИ ВЕРОЯТНОСТНЫХ МЕР, СООТВЕТСТВУЮЩИХ ГАУССОВСКИМ ПОЛЯМ, ОТЛИЧАЮЩИМСЯ корреляционными функциями

(Представлено академиком В. М. Глушковым 21 IX 1972)

Пусть $t = (t_1, \ldots, t_n) \in T$. T – ограниченное подмножество R^n , $R^n - n$ мерное эвклидово пространство, $\xi_k(t)$, k=1, 2, - действительные однородные гауссовские поля на T, $M\xi_k(t)=0$, $M\xi_k(t)\xi_k(s)=R_k(t-s)$, μ_k — меры, соответствующие $\xi_k(t)$, k=1, 2. Будем считать, что случайные поля $\xi_k(t)$ обладают спектральными плотностями $f_k(\alpha)$, $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{R}^n$, так что для функции $R(t, s) = R_2(t-s) - R_1(t-s)$ справедливо представление

$$R(t,s) = \int_{\mathbb{R}^n} e^{i\langle \alpha, t-s \rangle} \left[f_2(\alpha) - f_1(\alpha) \right] d\alpha, \tag{1}$$

где $\langle \alpha, \tau \rangle = \alpha_1 \tau_1 + \ldots + \alpha_n \tau_n$.

В (1, 3) содержатся основные результаты, связанные с вопросом об эквивалентности µ4 и µ2 в случае гауссовских стационарных процессов (т. е. при n=1). В работе (2) имеются условия эквивалентности в случае произвольного п. В настоящей работе также рассматриваются меры и и µ2, соответствующие случайным полям, однако приводимые здесь условия эквивалентности и ограничения на спектральные плотности $f_k(\alpha)$, при которых эти условия справедливы, вообще говоря, отличаются от предложенных в (2). В частности, полученные результаты могут применяться к исследованию абсолютной непрерывности µ1 и µ2 в случае некоторых типов дробно-рациональных спектральных плотностей. Один из вариантов такого применения представлен в теореме 3 настоящей работы.

Приводимое ниже утверждение (теорема 1) близко к одному результату 3. С. Зеракидзе (2) (при n=1 принадлежащему Ю. А. Розанову). Будем называть обобщенными преобразованиями Фурье преобразова-

ния Фурье обычных функций, рассматриваемых как обобщенные в смысле

Шварца.

Теорема 1. Для эквивалентности и и и и необходимо и достаточно, чтобы функция $R(t, s), (t, s) \in T \times T$, допускала такое продолжение на всё пространство $R^n imes R^n$, обобщенное преобразование Φ урье которого $b(\alpha, \beta)$ является обычной функцией, такой что

$$\iint\limits_{\mathbb{R}^n\times\mathbb{R}^n}\frac{|b\left(\alpha,\,\beta\right)|^2}{f_1\left(\alpha\right)f_1\left(\beta\right)}\,d\alpha\,d\beta<+\infty.$$

Определение 1. Пусть $X \subseteq R^N$, $l = (l_1, \ldots, l_N)$ — вектор с положительными целочисленными координатами, a(x), $x \in X$,— некоторая функтирующий пределением ция. Будем говорить, что a(x) принадлежит $L_2^{l}(X)$, если является конечной величина

$$\left\| a \right\|_{L^{l}_{2}(X)} = \sum_{j=1}^{N} \left\| \frac{\partial^{l_{j}} a}{\partial x_{j}^{l_{j}}} \right\|_{L_{2}(X)},$$

$$\|a\|_{L_2(X)} = \left[\int\limits_X^x |a(x)|^2 dx\right]^{1/2}.$$

Если же конечна величина

$$\|a\|_{W_2^l(X)} = \|a\|_{L_2^l(X)} + \|a\|_{L_2(X)},$$

то будем говорить, что a(x) принадлежит $W_2{}^l(X)$.

Пусть $\tau = t - s \in \Delta$; $t, s \in T$. Из теоремы 1 и равенства (1) следует Теорема 2. Пусть

$$f_1(\alpha) \cdot f_1(\beta) \cdot \sum_{j=1}^n [(1 + a_j^2)^{l_j} + (1 + \beta_j^2)^{l_j}] \geqslant c = \text{const} > 0,$$

 $r\partial e \ l_i, \ j=1,\ldots,n,$ — положительные целые. Если функция $R(\tau), \ \tau \subseteq \Delta$, принадлежит классу $L_2'(\Delta)$ при $l=(l_1,\ldots,l_n)$, а множество $T\times T$ удовлетворяет условиям продолжения с сохранением класса $W_{z^z}(T imes T)$ (см. (4), стр. 194, 445) при $z = (l_1, \ldots, l_n, l_1, \ldots, l_n)$, то μ_1 и μ_2 эквивалентны. Следствие. Пусть для достаточно больших | а |

$$f_1(\alpha) \cdot (1+|\alpha|^2)^m \ge c = \text{const} > 0,$$

где m- положительное целое, $|\alpha|=(\alpha_1{}^2+\ldots+\alpha_n{}^2)^{1/2}$.

Torda, если $R(\tau) \in L_2^{l}(\Delta)$ при $l = (l_1, \ldots, l_n)$, $l_j = 2m$, $j = 1, \ldots, n$, а множество $T \times T$ удовлетворяет условиям продолжения с сохранением класса $W_z{}^z(T \times T)$ при $z = (l_1, \ldots, l_n, \ l_1, \ldots, l_n)$, то μ_1 и μ_2 эквивалентны.

Определение 2. Многочлен $P(\alpha) = P(\alpha_1, \ldots, \alpha_n)$ от переменных $lpha_1,\ldots,lpha_n$ называется эллиптическим, если его главная часть отлична от нуля при $0 \neq \alpha \in \mathbb{R}^n$.

Используя следствие теоремы 2 и одно неравенство для эллиптических

многочленов (см. (5), стр. 106), получим, что справедлива

T е о р е м а 3. Пусть $f_1(\alpha) = P(\alpha) / Q(\alpha)$, где $P(\alpha)$ — неотрицательный эллиптический многочлен степени 2p, $Q(\alpha)$ — положительный многочлен степени 2q. Если $R(au) \in L_2{}^l(\Delta)$ при $l = (l_1, \ldots, l_n), \ l_j = 2(q-p), \ j = 1, \ldots$ $\dots, n, a \ T \times T \$ удовлетворяет условиям продолжения с сохранением класса $W_2{}^z(T \times T)$ при $z = (l_1, \dots, l_n, l_1, \dots, l_n)$, то меры μ_1 и μ_2 эквивалентны.

Если предположить, что $Q(\alpha)$ также является эллиптическим много-

членом, то имеет место

Tеорема 4. Пусть T — любое ограниченное множество в R^n . При выполнении условия

$$\int_{\mathbb{R}^n} \left[\frac{f_2(\alpha) - f_1(\alpha)}{f_1(\alpha)} \right]^2 d\alpha < +\infty$$
 (2)

меры и, и и д эквивалентны.

инженеров гражданской авиации

Замечание. Пользуясь условием (2), можно показать, что условие $\lim_{x \to \infty} f_2(\alpha) / f_1(\alpha) = 1$, как известно, необходимое (и достаточное) для экви-

валентности μ_1 и μ_2 в случае дробно-рациональных спектральных плот-

ностей при n=1, не является необходимым при $n \ge 2$. Киевский институт

Поступило 17 XI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. И. Гихман, А. В. Скороход, Теория случайных процессов, М., 1971.

² З. С. Зеракидзе, Тр. Инст. прикл. матем. Тбилисск. унив., 2, 215 (1969).

³ И. А. Ибрагимов, Ю. А. Розанов, Гауссовские случайные процессы, М., 1970. 4 С. М. Никольский, Приближение функций многих переменных и теоремы вложения, М., 1969. 5 Л. Хермандер, Линейные дифференциальные операторы с частными производными, М., 1965.