УДК 513.83

MATEMATUKA

А. П. КОМБАРОВ

О НОРМАЛЬНОСТИ Σ_т-ПРОИЗВЕДЕНИЙ

(Представлено акдемиком П. С. Александровым 21 XI 1972)

В произведении пространств $X = \Pi\{X_{\alpha}: \alpha \in A\}$ выберем точку $s = \{s_{\alpha}\}$. Для каждой точки x произведения X определено множество индексов $Q(x) = \{\alpha \in A: x_{\alpha} \neq s_{\alpha}\}$. Пусть $\mathfrak{m} -$ бесконечное кардинальное число. $\Sigma_{\mathfrak{m}}$ -гроизведение пространств $X_{\alpha}, \alpha \in A$, определяется как подпространство $\Sigma_{\mathfrak{m}} = \{x \in X: Q(x) \mid \leq \mathfrak{m}\}$ произведения X. В $({}^{1}, {}^{2})$ доказано, что $\Sigma_{\mathfrak{m}}$ -произведение полных в смысле Чеха паракомпактов, теснота каждого из которых счетна, коллективно нормально. Если $\mathfrak{m} > \aleph_0$ и среди паракомпактов $X_{\alpha}, \alpha \in A$, несчетное число небикомпактных, то $\Sigma_{\mathfrak{m}}$ -произведение паракомпактов $X_{\alpha}, \alpha \in A$, ненормально, поскольку в этом случае $\Sigma_{\mathfrak{m}}$ -произведение содержит в качестве замкнутого подмножества произведение несчетного числа бесконечных дискретных пространств, которое, как известно $({}^3)$, не является нормальным пространством.

Tеорема 1. $\Sigma_{\mathfrak{m}}$ -произведение бикомпактов, теснота каждого из ко-

торых не превосходит т, нормально.

Замечание. Пусть $|A|=\mathfrak{n}>\mathfrak{m}$, $D^{\mathfrak{n}}$ — обобщенный канторов дисконтинуум веса \mathfrak{n} , а D_{α} , $\alpha \in A$,— дискретные двоеточия. Как и в (¹), нетрудно убедиться, что $\Sigma_{\mathfrak{m}}$ -произведение бикомпактов $D^{\mathfrak{n}}$ и D_{α} , $\alpha \in A$, ненормально.

Система множеств $h = \{H_t: t \in T\}$ разделяется в открытом множестве Γ , если найдется дизъюнктиая система открытых множеств $\{U_t: t \in T\}$

такая, что $H_t \cap \Gamma \subseteq U_t$ для любого $t \in T$ (4).

 Π емма 1. Пусть p — непрерывное отображение пространства Z на паракомпакт Y, множества Γ_{λ} , $\lambda \in \Lambda$, открыты в Y, а система $h = \{H_t \subseteq Z: t \in T\}$ разделяется в $p^{-1}(\Gamma_{\lambda})$ при каждом $\lambda \in \Lambda$.

Тогда для любого замкнутого множества $F \subseteq U$ $\{\Gamma_{\lambda}: \lambda \in \Lambda\}$ найдется открытое множество $U \supseteq F$ такое, что система h разделяется в $p^{-1}(U)$.

Доказательство. Нетрудно заметить, что существует локальноконечная система открытых множеств $\{V_{\xi}: \xi \in \Xi\}$ такая, что $F \subseteq \cup \{V_{\xi}: \xi \in \Xi\}$, а система замкнутых множеств $\{[V_{\xi}]: \xi \in \Xi\}$ вписана в $\{\Gamma_{\lambda}: \lambda \in \Lambda\}$. Пусть $U = \cup \{V_{\xi}: \xi \in \Xi\}$. Далее непосредственно обобщаются построения из доказательства леммы 1 из (1).

В доказательстве теоремы 1 система h состоит из двух множеств, а p

является проекцией произведения на сомножитель.

Доказательство теоремы 1. Пусть теснота каждого из бикомпактов X_{α} , $\alpha \in A$, не превосходит \mathfrak{m} . Предположим, что множества H_1 и H_2 не разделяются в $\Sigma_{\mathfrak{m}} \subseteq X = \Pi\{X_{\alpha} : \alpha \in A\}$. Ясно, что H_1 и H_2 не разделяются и в X. Возьмем $B_0 \subseteq A$ так, чтобы $|B_0| \leq \mathfrak{m}$, и определим $X_0 = \Pi\{X_{\alpha} : \alpha \in B_0\}$. Через p_0 обозначим проекцию X на X_0 . Бикомпакт X_0 не допускает покрытия открытыми множествами, в полных прообразах которых при отображении p_0 множества H_1 и H_2 разделяются ((4), замечание к лемме 1). Поэтому найдется точка $x_0 \subseteq X_0$ такая, что для любого открытого множества V, содержащего эту точку, множества H_1 и H_2 не разделяются в $p_0^{-1}(V)$.

Предположим теперь, что для каждого натурального числа i < j определено множество $B_i \subseteq A$ такое, что $|B_i| \le \mathfrak{m}$ и, если k < i, то $B_k \subseteq B_i$.

Таким образом определена проекция p_h^i произведения $X_i = \Pi\{X_\alpha: \alpha \in B_i\}$ на X_h . Через p_i обозначим проекцию X на X_i . Пусть далее для всех i < j в X_i выбрана точка x_i такая, что если $x_i \in V \subseteq X_i$ и V открыто, то множества H_1 и H_2 не разделяются в $p_i^{-1}(V)$. Предположим также, что $p_h^i(x_i) =$

 $= x_k$ при k < i.

Построим множество B_i и в произведении $X_i = \Pi\{X_\alpha\colon \alpha\in B_i\}$ определим точку x_i с требуемыми свойствами. Пусть j=i+1. Нетрудно заметить, что $x_i \in [p_i(H_i)] \cap [p_i(H_2)]$. Теснота бикомпакта X_i не превосходит \mathbb{M} ((5), теорема 4, замечание 3), поэтому $x_i \in [p_i(M_i)] \cap [p_i(N_i)]$, где $M_i \subseteq H_1$, $N_i \subseteq H_2$ п $|M_i| \le \mathbb{M}$, $|N_i| \le \mathbb{M}$. Пусть $B_j = B_i \cup \bigcup \{Q(x): x \in M_i \cup \bigcup N_i\}$. Ясно, что $|B_j| \le \mathbb{M}$. Проекция p_i^j замкнута, т. е. для любого открытого множества $U \supseteq (p_i^j)^{-1}(x_i)$ найдется окрестность V точки x_i , для которой $(p_i^j)^{-1}(V) \subseteq U$. Множества H_1 и H_2 не разделяются в $p_i^{-1}(V) = p_j^{-1}((p_i^j)^{-1}(V))$, поэтому H_1 и H_2 не разделяются в $p_i^{-1}(U)$. Но тогда из леммы 1 следует, что найдется точка $x_j \in (p_i^j)^{-1}(x_i)$ такая, что если $x_j \in V \subseteq X_j$ и V открыто, то множества H_1 и H_2 не разделяются в $p_j^{-1}(V)$. Пусть $B = \bigcup \{B_j: j=1, 2, 3, \ldots\}$. Очевидно $|B| \le \mathbb{M}$. Определим точку

Пусть $B = \bigcup \{B_j : j = 1, 2, 3, ..., \}$. Очевидно $|B| \le m$. Определим точку $y \in \Sigma_m$ условиями: $p_j(y) = x_j$ при j = 1, 2, 3, ... и $y_\alpha = s_\alpha$ при $\alpha \in A \setminus B$.

Произвольная окрестность точки у содержит окрестность вида

$$U=p_j^{-1}(V)\,\cap\, \{\pi_\alpha^{-1}(\partial^\alpha):\alpha \in K\},$$

где множество V открыто в X_j и содержит точку x_j , K является конечным подмножеством $A \setminus B$, множество O^α открыто в X_α и содержит точку s_α , а π_α проекция X на X_α при $\alpha \in K$. Заметим, что $x_j \in [p_j(M_j)] \cap [p_j(N_j)]$, и выберем $z' \in M_j$ и $z'' \in N_j$ так, чтобы $p_j(z') \in V$ и $p_j(z'') \in V$. Легко видеть, что $z_\alpha'' = z_\alpha'' = s_\alpha$ при $\alpha \in A \setminus B$. Поэтому точки z' и z'' лежат в U, т. е. произвольно выбранная окрестность точки y пересекается и с H_1 , и с H_2 . Следовательно, H_1 и H_2 не могут быть пепересекающимися замкнутыми подмножествами Σ_m . Теорема доказана

Теорема 2. Σ_m -произведение бикомпактов тесноты $\leq m$ и не более чем счетного числа перистых паракомпактов тесноты $\leq m$ коллективно нор-

мально.

Доказательство. Заметим, что такое $\Sigma_{\mathfrak{m}}$ -произведение совпадает с произведением $X \times Y$, где X — произведение не более чем счетного числа перистых паракомпактов тесноты $\leq \mathfrak{m}$, а Y является $\Sigma_{\mathfrak{m}}$ -произведением бикомпактов тесноты $\leq \mathfrak{m}$. Произведение паракомпакта, теснота которого не превосходит \mathfrak{m} , и нормального сильно \mathfrak{m} -компактного пространства коллективно нормально (2). Пространство Y нормально и сильно \mathfrak{m} -компактно, X — перистый паракомпакт (6), теснота которого не превосходит \mathfrak{m} . Докажем последнее. Заметим, что теснота всякого бикомпакта, лежащего в пропзведении не более чем \mathfrak{m} пространств тесноты $\leq \mathfrak{m}$, не превосходит \mathfrak{m} (5). Вполне регулярное перистое пространство является пространством точечно-счётного типа (6), т. е. покрывается бикомпактами, характер которых в пространстве счетен. Доказательство завершает

Предложение. Пусть P — регулярное пространство, $P = \bigcup \{P_{\alpha}: \alpha \in A\}$ и для всех $\alpha \in A$ теснота P_{α} и характер P_{α} в P не превосходят m.

Тогда теснота Р не превосходит т.

Таким образом, если $m > \aleph_0$, то Σ_m -произведение перистых параком-пактов, теснота которых не превосходит m, коллективно нормально в том и только в том случае, когда все сомножители, за исключением, быть может, счетного числа, бикомпактны. Отметим, что Σ_m -произведение перистых паракомпактов X_α , $\alpha \in A$, всегда содержит всюду плотное паракомпактное подпространство $\sigma = \{x \in X \colon |Q(x)| < \aleph_0\}$ (σ -произведение пространств X_α , $\alpha \in A$ (4), поскольку справедлива

Теорема 3. о-Произведение пространств *, любое конечное произве-

дение которых паракомпактно, является паракомпактом.

^{*} Все пространства предполагаются регулярными.

Доказательство. Пусть $\sigma_n = \{x \in X: |Q(x)| \le n\}, \ \sigma = \cup \{\sigma_n: n = n\}$

= 0, 1, 2, . . . }. Предварительно докажем

Утверждение І. Если $\sigma_n \subseteq V \subseteq [V] \subseteq U \subseteq \sigma$, множества V и U открыты, а семейство открытых (в σ) множеств $\eta = \{H_{\xi}: \xi \in \Xi\}$ покрывает $\sigma_{n+1} \setminus U$, то существует локально-конечное открытое (в σ) покрытие $\sigma_{n+1} \setminus U$, вписанное в σ .

Пусть $B \subseteq A$. Определим $X_B = \{x \in X: x_\alpha = s_\alpha, \text{ если } \alpha \in A \setminus B\}$ и проекцию p_B произведения X на X_B : $p_B(x)=y$, где $y_\alpha=x_\alpha$ при $\alpha\in B$ и $y_\alpha=s_\alpha$ при $\alpha\in A\setminus B$. Пусть $\mathfrak A=\{a\subseteq A\colon |a|=n+1\}$. Для каждого $a\in\mathfrak A$ определим $W_a=\{x\subseteq\sigma\colon p_a(x)\subseteq X_a\setminus [V]\}\setminus [V]$. Покажем, что семейство открытых множеств $w=\{W_a\colon a\in\mathfrak{A}\}$ локально конечно в σ . Пусть $x\in\sigma$. Поскольку $W_a \cap V = \emptyset$ для всех $a \in \mathfrak{A}$, можно считать, что |Q(x)| > n. Рассмотрим конечную систему множеств $\mathfrak{B} = \{b \colon b \subseteq Q(x), |b| \leqslant n\}$. Очевидно, $p_b(x) \in \sigma_n \subseteq V$ для всех $b \in \mathfrak{B}$. Для каждой точки $p_b(x)$, $b \in \mathfrak{B}$, выберем стандартную окрестность, с которой эта точка содержится в $V: \mathcal{C}(b) = \{y \in \sigma: y_{\alpha} \in \mathcal{C}(b, \alpha), \text{ если } \alpha \in K(b)\}, \text{ где } K(b) - \text{конечное под$ множество A, множество $C(b, \alpha)$ открыто в X_{α} и содержит $(p_b(x))_{\alpha}$ при $\alpha \in K(b)$. Пусть $K = \cup \{K(b) : b \in \mathfrak{B}\}$. Для каждого $\alpha \in K$ определим $\mathcal{O}(\alpha) = \cap \{\mathcal{O}(b, \alpha) : x_{\alpha} \in \mathcal{O}(b, \alpha), b \in \mathfrak{B}\}$. Пусть $\mathcal{O} = \{y \in \mathfrak{G} : y_{\alpha} \in \mathcal{O}(\alpha), b \in \mathfrak{B}\}$ если $\alpha \in K$. Открытое множество C содержит точку x и может пересекаться лишь с теми W_a , для которых $a \subseteq Q(x)$. В самом деле, пусть $y \in \mathcal{O} \cap W_a$ и $a \setminus Q(x) \neq \emptyset$. Тогда $Q(x) \cap a = b \in \mathfrak{B}$. Ясно, что $(p_a(y))_a = (p_b(x))_a = s_a$ при $\alpha \in A \setminus a$. Если $\alpha \in (a \setminus b) \cap K(b)$, то $x_\alpha = s_\alpha = a$ $=(p_b(x))_{\alpha}\in C(b,\alpha)$. Следовательно, $C(\alpha)\subseteq C(b,\alpha)$ и $y_{\alpha}\in C(b,\alpha)$. При $\alpha \in b \cap K(b)$ снова $x_{\alpha} = (p_b(x))_{\alpha} \in C(b, \alpha)$, и $y_{\alpha} \in C(b, \alpha)$. Итак $p_a(y) \in C(b) \subseteq V$, что противоречит условию $p_a(y) \in X_a \setminus [V]$.

Пусть $a \in \mathfrak{A}$. Поскольку X_a — паракомпакт, существует локально-конечная система открытых (в X_a) множеств $\rho = \{P_\omega : \omega \in \Omega_a\}$, вписанная в систему $\{H_{\xi} \cap X_a \colon \xi \in \Xi\}$ и покрывающая $X_a \setminus U$. Для каждого $\omega \in \Omega_a$ выберем $\xi(\omega) \in \Xi$ так, чтобы $P_{\omega} \subseteq H_{\xi(\omega)}$. Пусть $\Gamma_{\omega} = p_a^{-1}(P_{\omega}) \cap H_{\xi(\omega)} \cap W_a$ для каждого $\omega \in \Omega_a$. $\Omega = \bigcup \{\Omega_a \colon a \in \mathfrak{A}\}$. Легко проверяется, что система

 $\gamma = \{\Gamma_\omega \colon \omega \in \Omega\}$ является искомым покрытием.

Утверждение II. Если $\sigma_n \subseteq U \subseteq \sigma$ и U открыто, то найдется откры-

тое множество V такое, что $\sigma_n \subseteq V \subseteq [V] \subseteq U$.

Поскольку при n=0 утверждение II очевидно, предположим, что оно справедливо при n=k, и пусть $\sigma_{k+1} \subseteq U$. Найдутся открытые множества V_1 и V_2 такие, что $\sigma_k \subseteq V_2 \subseteq [V_2] \subseteq V_1 \subseteq [V_1] \subseteq U$. Если $x \in \sigma_{k+1} \setminus V_1$, то выберем окрестность Ox точки x такую, что $[Ox] \equiv U$. Согласно утверждению I существует локально-конечная система открытых множеств γ , покрывающая $\sigma_{k+1} \setminus V_1$ и вписанпая в $\{Ox: x \in \sigma_{k+1} \setminus V_1\}$. Пусть V = $=V_1\cup\cup\{\Gamma\colon\Gamma\in\gamma\}$. Из консервативности системы у следует, что $[V]\subseteq U$.

Пусть теперь μ — произвольное открытое покрытие σ , $\sigma_0 \in \Gamma_0 \in \mu$, $\delta_0 = \{\Gamma_0\}$. Предположим, что уже определена локально-конечная система открытых множеств δ_n , вписанная в μ и покрывающая σ_n . Пусть U= $= \cup \{\Gamma: \Gamma \in \delta_n\}$. Если $\sigma_{n+1} \setminus U \neq \emptyset$, то из утверждений II и I следует, что найдется локально-конечное открытое покрытие $\sigma_{n+1} \setminus U$, вписанное в μ . Обозначим это покрытие через γ . Тогда $\gamma \cup \delta_n = \delta_{n+1}$ является открытым локально-конечным покрытием σ_{n+1} , вписанным в μ . Система $\delta=\cup$ $\{\delta_n:$ $n=0, 1, 2, \ldots$ покрывает о и вписана в μ . Таким образом, о паракомпактно $((^{7})$, теорема 5.1.4).

Теорема 4. о-Произведение пространств, любое конечное произведение которых финально компактно, является финально компактным про-

странством *.

^{*} Доказательство теоремы 4 вполне аналогично доказательству предложения 3 из (4).

Следствие. Пусть паракомпакт X является непрерывным образом $\Sigma_{\mathfrak{m}}$ -произведения пространств, любое конечное произведение которых финально компактно. Тогда X финально компактно *.

В самом деле, образ о-произведения в этом случае представляет собой всюду плотное финально компактное подпространство паракомпакта X. Отсюда следует, что X является финально компактным пространством (°).

Автор благодарен В. И. Пономареву за внимание, проявленное к ра-

боте.

московский государственный университет им. М. В. Ломоносова Поступило 15 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. П. Комбаров, ДАН, 199, 526 (1971). ² А. П. Комбаров, ДАН, 205, 1033 (1972). ³ А. Н. Stone, Bull. Am. Math. Soc., 54, 977 (1948). ⁴ Н. Н. Corson, Am. J. Math., 81, 785 (1959). ⁵ В. И. Малыхин, ДАН, 203, 1001 (1972). ⁶ А. В. Архангельский, Матем. сборн., 67, 55 (1965). ⁷ R. Engelking, Outline of General Topology, Amsterdam, 1968. ⁸ R. Engelking, Fund. Math., 59, 221 (1966). ⁹ S. Willard, Canad. Math. Bull., 14, 127 (1971).

^{*} Следствие является усилением следствия 3 из (8).