УДК 620.183:669.018.26

ТЕХНИЧЕСКАЯ ФИЗИКА

А. И. КОВАЛЕВ, Е. Н. КРИСТИ

МЕТОД ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ПРИ ИССЛЕДОВАНИИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ПОД ТОКОМ

(Представлено академиком С. Т. Кишкиным 29 VI 1972)

Высокая структурная чувствительность метода электрического сопротивления делает его привлекательным для исследования структурных, фазовых и внутрифазовых изменений в металлах и сплавах. При этом для правильной интерпретации результатов всегда необходим тщательный анализ всего многообразия причин, вызывающих изменение электросопротивления. Метод электросопротивления часто применяют, например, для исследования деформационного воздействия. В этом случае также прихо-

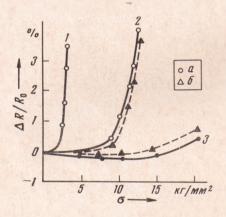


Рис. 1. Характерные зависимости электрического сопротивления образцов алюминия (1), меди (2), никеля (3) от величины растягивающего усилия σ ; a— сопротивление под нагрузкой, σ — остаточное сопротивление после снятия нагрузки

дится иметь дело с взаимодействием многих факторов. Большинство таких факторов известно исследователям заранее, и они могут быть учтены при обсуждении результатов.

Однако в опубликованных работах не упоминается о влиянии тока, проходящего через деформируемый образец, на изменение сопротивления последнего в процессе пластической деформации. Между тем, в случае одновременного воздействия растягивающего усилия и проходящего в направлении действия силы электрического тока остаточное сопротивление образца оказывается после снятия нагрузки большим, чем в случае растяжения при том же усилии, но без воздействия тока. Это явление наблюдается даже при сравнительно небольших величинах тока $(0,1-0,2\ a/mm^4)$. Температурный эффект такого тока незначителен: температура образца повышается лишь на доли градуса. Удельное сопротивление при малых деформациях изменяется также незначительно и, таким образом, изменение остаточного сопротивления определяется в основном изменением размеров образца, т. е. неодинаковой пластической деформацией под током и без тока. Поэтому было выполнено специальное исследование влияния тока на процесс пластической деформации и электросопротивление.

В качестве материала для опытов были выбраны технически чистые металлы — медь, алюминий и никель (в отожженном состоянии). Образцы

в виде проволок диаметром от 1,5 до 3,5 мм подвергались растяжению при компатной температуре без тока и под током на разрывной рычажной машине со ступенчатым нагружением. Образцы были электрически изолированы от массы машины. Деформация, с целью устранения температурного воздействия, осуществлялась в специальном термостате, заполненном неэлектропроводной жидкостью (дистиллированной водой или ацетоном). Электрическое сопротивление измерялось с помощью потенциометров Р-306 и Р-348. Источником постоянного тока служили аккумуляторы, переменный ток имел частоту 50 гц.

Характерная зависимость относительного изменения электросопротивления $\Delta R / R_0$ и остаточного сопротивления (после снятия нагрузки) $\Delta R' / R_0$ для меди, алюминия и никеля от нагрузки представлена

на рис. 1.

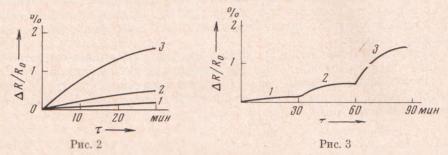


Рис. 2. Зависимость $\Delta R/R_0$ меди от времени при постоянном напряжении растяжения 11,6 кг/мм² при деформации без тока (1), под постоянным током 0,2 а/мм² (2) и при пульсациях (20—30 пульсаций в 1 мин.) того же тока (3)

Рис. 3. Интенсификация процесса ползучести током. Участок 1 соответствует деформации без тока, участок 2 — деформации после включения тока и участок 3 — при последующих пульсациях того же тока

Воздействие тока на процесс пластической деформации, проявляющееся в увеличении остаточного электросопротивления по сравнению с сопротивлением при деформации без тока, становится более заметным после некоторой выдержки под нагрузкой, т.е. при ползучести. Относительное изменение остаточного электросопротивления в области равномерной пластической деформации пропорционально изменению размеров образца (относительному удлинению). При постоянной нагрузке, несколько превышающей предел текучести, в условиях комнатной температуры, т.е. в процессе низкотемпературной ползучести, включение электрического тока в стадии замедления ползучести интенсифицирует процесс на некоторое время, в течение которого деформация приобретает значительное приращение; затем скорость ползучести снова уменьшается.

Переменный ток оказывает на деформацию действие, аналогичное по-

стоянному току, но его влияние более эффективно.

Периодическое включение и выключение постоянного тока той же величины (0,2 а/мм²) оказалось еще более действенным.

На рис. 2 представлены зависимости электросопротивления от времени при постоянной нагрузке, полученные в условиях деформации без тока, под током и при пульсации того же тока.

В большинстве случаев пульсации постоянного тока за 30 мин. при нагрузке 11,6 кг/мм² вызывают приращение электросопротивления медной проволоки $\Delta R'/R_0$ порядка 1-1,5%, что соответствует относительному удлинению 0,5-1,25%. При той же нагрузке без тока, за то же время приращение сопротивления составляет лишь 0,2-0,4%, а относительное удлинение 0,1-0,2%.

На рис. З приведены результаты измерения электросопротивления одного и того же образца, деформированного при одной и той же нагрузке

с последовательным изменением режима ползучести через каждые 30 мин.

за счет включения и затем пульсаций тока.

Наиболее эффективно воздействие тока на ползучесть проявляется при нагрузках, лишь немного превышающих предел текучести. После того как деформация достигает некоторого предела, и ток, и его пульсация перестают оказывать заметное действие на скорость ползучести.

В пределах изменения плотности тока от 0,2 до 2 а/мм² особого различия в эффективности воздействия постоянного тока на ползучесть мед-

ных образцов обнаружено не было.

Более эффективное действие пульсаций тока наводит на мысль об аналогии наблюдаемого явления с описанной О. А. Троицким электропластичностью. Однако в работах $(^4,^2)$ речь идет о влиянии на пластичность металлов кратковременных $(10^{-4}$ сек.) импульсов тока, очень большого до 4800 а/мм² — по величине. В этом случае трудно исключить возможность локального повышения температуры до больших значений, влияющих на ползучесть. В нашем случае плотность тока была на несколько порядков меньше.

Объясление физической природы обнаруженного явления потребует, по-видимому, проведения более разносторонних исследований, в частности, исследования влияния тока на дислокационную структуру деформируемого металла, влияния тока на энергию активации ползучести в раз-

личных температурных областях и т.д.

Поступило 22 VI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ О. А. Троицкий, А. Т. Розно, ФТТ, 12, в. 1, 203 (1970). ² О. А. Троицкий, ФТТ, 13, в. 1, 185 (1971).