
УДК 538.27 ХИМИЯ

П. В. ПЕТРОВСКИЙ, Э. И. ФЕДИН, Л. А. ФЕДОРОВ, А. Г. ГИНЗБУРГ, В. Н. СЕТКИНА, член-корреспондент АН СССР Д. Н. КУРСАНОВ

СПЕКТРЫ Я.М.Р. С 13 И ПРОБЛЕМА ПЕРЕДАЧИ ЭЛЕКТРОННЫХ ЭФФЕКТОВ В π -ЦИКЛОПЕНТАДИЕНИЛЬНЫХ ПРОИЗВОДНЫХ МАРГАНЦА

В работах (1-8) продемонстрирована полезность спектров я.м.р. С13 при обсуждении электронного строения π -циклопентадиенильных производных переходных металлов, а также перераспределения в них электронной плотности под действием различных возмущающих факторов. Ранее мы, а также другие авторы исследовали спектры я.м.р. С13 нескольких серий π -циклопентадиенильных производных железа (5-8). В пастоящем сообщении излагаются первые результаты изучения спектров я.м.р С13 π -циклопентадиенильных комплексов марганца. На примере производных типа (I), (II) и (III) исследовано влияние заместителей *: алкильных и ацильных групп в π -циклопентадиенильном кольце, а также фосфиновых и родственных им лигандов на химические сдвиги ядер С13. Полученные результаты объединены в табл. 1.

Спектры измерены с использованием спектрометра Брукер HX-90 в режиме фурье-преобразования и двойного я.м.р. $C^{13} - \{H^1\}$ с шумовой модуляцией частоты облучения протонов. Растворитель — хлороформ или дейтерохлороформ. В спектрах производных I помимо сигналов заместителя X обнаружено четыре сигнала: два сигнала равной интенсивности ядер C_2 и C_3 (их отнесение требует специального рассмотрения), менес интенсивный сигнал узловых ядер C_1 и очень широкий сигнал в слабом поле, соответствующий карбонильным ядрам углерода. Форма карбонильного сигнала в π - C_5 H_5 M_1 (CO) $_3$ обусловлена наличием спин-спинового взаимодействия $C^{13} - Mn^{55}$ (естественное содержание Mn^{55} $100\,\%$, спин $I = ^{5}/_2$), однако при $X \neq H$ он заметно сужается из-за изменения времени квадрупольной релаксации ядер Mn^{55} в соединениях с пониженной симметрией. Спектры π -циклопентадиенильного лиганда производных II и III существенно проще из-за равноценности ядер углерода.

При исследовании гомоаннулярного эффекта в монозамещенных ферроцена (7) установлено, что во фрагменте $\mathrm{XC_5H_5Fe}$ атомы $\mathrm{C_4}$, $\mathrm{C_2}$ и $\mathrm{C_3}$ (обозначения см. в структуре I) воспроизводят основные признаки узлового, о- и n-ядер углерода в соответствующих монозамещенных бензола. Если воспользоваться этим наблюдением при рассмотрении фрагмента $\mathrm{XC_5H_4Mn}$,

^{*} Заместители (Х) находятся в положении 1.

Химические сдвиги С¹³ (м.д. в слабое поле от ТМС) в некоторых л-циклопентадиенильных производных марганца

Тий сое- динения	X	π-Циклопентадиенильный лиганд			do
		Cı	С2 и С3	C _{2,3} (cp.)	CO
I	COOCH3 COCH3 H	84,45 92,6	83,09 и 87,12 84,2 и 87,4 83,1	85,1 85,8	222,75 223,2 224,9
	CH ₃ CH ₂ CH ₃ CH(CH ₃) ₂ C(CH ₃) ₃	103,0 109,0 112,5 118,0	83,1 m 82,5 81,7 m 84,4 81,2 m 82,1 80,9 m 83,4	82,8 81,55 81,65 82,15	224,4 $224,7$ $225,1$ $225,3$
. I1	$egin{array}{c} { m As}({ m C}_6{ m H}_5){ m a} \ { m Sb}({ m C}_6{ m H}_5){ m a} \ { m P}({ m C}_6{ m H}_5){ m a} \ { m P}({ m OC}_6{ m H}_5){ m a} \end{array}$		80,8 79,1 82,4 80,8	The second secon	232,4 230,8 233,3 226,4
:	$P(uso-C_3H_7)_3$ $P(C_6H_{11})_3$		80,6 80,9		230,7
III	$\begin{array}{c} (C_6H_5)_2PCH_2P(C_6H_5)_2 \\ (C_6H_5)_2P(CH_2)_2P(C_6H_5)_2 \\ (C_6H_5)_2P(CH_2)_3P(C_6H_5)_2 \\ 2P(C_6H_5)_3 \end{array}$		76,7 79,7 80,6 82,2		220,5 —

то вместо экранирования отдельных ядер C_2 и C_3 можно оперировать величиной из среднего химического сдвига и, таким образом, обсуждать электронные эффекты в замещенном кольце без специального отнесения сигналов япер C_2 и C_3 .

Из данных, относящихся к замещенным в кольце производным I, следуют два вывода (см. табл. 1: иля простоты сравнения исключим X—H и огра-

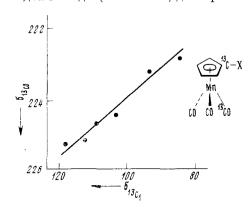


Рис. 1. Зависимость между экранированием ядер C_1^{13} и $C^{13}O$ в производных I

ничимся лишь углеродными заместителями, т. е. заместителями, у которых к циклопентадиенильному лиганду примыкает единый всей серии заместителей пля атом — атом углерода; за соединение сравнения используем, пример. $CH_3C_5H_4Mn(CO)_3$). среднее экранирование первых. ядер С2,3 под действием алкильных заместителей, более электронодонорных, чем $X = CH_3$, как и можно было ожидать, возрастает, а под действием электроноакцепторных заместителей, напротив, падает. Во-вторых, экранирование ядер С, изменяется прямо противоположным образом: возрастает

под действием электроноакцепторных заместителей и снижается под действием электронодонорных. Ранее аналогичные особенности наблюдались при исследовании спектров я.м.р. С¹³ монозамещенных ферроцена, и они находят удовлетворительное объяснение (⁷).

Однако в отличие от соединений ферроценового типа в производных I имеется еще один сорт ядер углерода, у которых тенденция изменения экранирования аналогична тому, что наблюдается для узловых ядер C_1 и противоположна ходу изменения экранирования ядер $C_{2,3}$. Мы имеем

в виду ядра углерода карбонильной группы. Действительно, как следует из данных табл. 1, такие заместители, как $X = C_2H_5$, изо- C_3H_7 и трет.- C_4H_9 , смещают сигнал C13 карбонильных ядер в слабое поле (по сравнению тогда как электроакцепторные заместители $X = COCH_s$ и СООСНа смещают его в противоположном направлении. График, приведенный на рис. 1, свидетельствует, что сходство в спектральном поведении ядер С113 и С13О для соединений с С32-карбонильным фрагментом носит не только качественный, но и количественный характер.

Данные табл. 1, касающиеся производных II, свидетельствуют о том, что при замещении одной карбонильной группы на третичный фосфиновый (а также третичный арсиновый или стибиновый) лиганд ЭК, происходит сдвиг сигнала л-циклопентадиенильных ядер C¹³ на 0,5-4,0 м.д. в сильное поле (при этом ядра С13 оставшихся карбонильных групп смещаются на 1,5-8 м.д. в слабое поле). Сравнение сдвигов для всей серии производных II показывает, что масштаб дополнительного экранирования п-циклопентадиенильных ядер под влиянием заместителя $\partial \hat{R}_3$ определяется в основном свойствами первого атома лиганда (для производных Э(С6Н5)3, например, оффект усиливается в порядке P < As < Sb). Однако изменения, наблюдающиеся при варьировании R в лигандах типа PR₃, свидетельствуют о том, что определенное влияние на экранирование оказывают также и более упаленные рапикалы В.

Данные я.м.р. С¹³, относящиеся к производным III, свидетельствуют о существовании зависимости экранирования л-циклопентадиенильных ядер углерода от геометрических факторов. В этих производных практически постоянны не только непосредственное окружение металла, но и более

удаленные от него атомы бидентатного лиганда LL; изменяется лишь угловое распределение ближайших к марганцу атомов углерода и фосфора, связанное с изменением длины полиметиленовой цепи. Как видно из табл. 1, химический сдвиг п-циклопентадиенильных ядер углерода обнаруживает явную зависимость от числа метиленовых звеньев в лиганде LL:

при $n \to 3$ сигнал π -циклопентадиенильной группы последовательно смещается в слабое поле. Предел, к которому стремится экранирование этих ядер при $n \to \infty$, по-видимому, моделируется комплексом π - $\hat{C}_5H_5Mn(CO)$ · $\cdot (P(C_6H_5)_3)_2$, у которого отсутствует связь между атомами фосфора и со-

ответственно угловое напряжение минимально.

Возрастание экранирования л-циклопентадиенильных ядер С13 в производных II по сравнению с л-С₆Н₅Мп (СО) 3 позволяет констатировать повышение электронной плотности на этих ядрах в нереагирующих молекулах и ожидать возрастания реакционной способности π -C₅ H_5 -лиганда в реакциях электрофильного замещения. Такое ускорение реакций действительно обнаружено при исследовании электрофильного водородного обмена (9-11). Очевидно, эффект обусловлен известной способностью третичных фосфинов, арсинов и стибинов быть более сильными о-донорами, чем карбонильная группа (и более слабыми п-акцепторами).

Что касается экранирования ядер C¹³ карбонильных групп, то для производных I ход его изменения согласуется с известными данными о взаи-

мосвязи между химическими сдвигами C^{13} во фрагменте C-R и электронными свойствами заместителя R (12). Следует, однако, отметить отсутствие соответствия между экранированием ядер C^{13} в CO- и C_5H_5 -группах в производных II, что указывает на сложность эффекта и, вероятно, на определенные различия в механизме передачи электронных эффектов во фрагментах $\partial - Mn - C^{13}O$ и $\partial - Mn - C_5^{13}H_5$. Очевидно, корректная интерпретация изменений, наблюдающихся при переходе от π -C₅ \hat{H}_5 Mn (CO)₃ к менее симметричным производным типа II, требует учета многих факторов и получения дополнительной информации.

Институт элементоорганических соединений Академии наук СССР Москва

Поступило 13 XII 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ P. C. Lauterbur, R. B. King, J. Am. Chem. Soc., 87, 3266 (1965). ² P. K. Burkert, H. P. Fritz et al., J. Organometal. Chem., 24, C59 (1970). ³ A. H. Несмеянов, О. В. Ногина и др. ДАН, 205, № 4 (1972). ⁴ А. Н. Несмеянов, Э. И. Федин и др., ЖСХ, 13, 1033 (1972). ⁵ L. F. Farnell, E. W. Randall, E. Rosenberg, Chem. Commun., № 18, 1078 (1971). ⁶ О. А. Gansow, D. A. Schexnayder, B. Y. Kimura, J. Am. Chem. Soc., 94, 3406 (1972). ⁻ A. H. Несмеянов, П. В. Петровский и др., ЖСХ 14, № 1, 49 (1973). ⁶ А. Н. Несмеянов, Л. А. Федоров, ЖСХ, 13, № 6, 1032 (1972). ⁶ Д. Н. Курсанов, В. Н. Сеткина и др., Изв. АН СССР, сер. хим., 1969, 2842. ¹ О. А. Г. Гинзбург, В. Н. Сеткина, Д. Н. Курсанов, Изв. АН СССР, сер. хим., 1971, 177. ¹ В. Н. Сеткина, А. Г. Гинзбург и др., Изв. АН СССР, сер. хим., 1971, 434. ¹ С. Е. Масіеl, J. Chem. Phys., 42, 2746 (1965).