УДК 542.943+547.563+541.515

ФИЗИЧЕСКАЯ ХИМИЯ

В. Д. ПОХОДЕНКО, В. А. ХИЖНЫЙ, В. Г. КОШЕЧКО, О. И. ШКРЕБТИЙ

КАТИОН-РАДИКАЛЫ — ПЕРВИЧНЫЕ ПРОДУКТЫ ОКИСЛЕНИЯ ФЕНОЛОВ

(Представлено академиком Н. М. Эмануэлем 29 XII 1972)

Взаимодействие фенолов с неорганическими и органическими окислителями (PbO_2 , Ag_2O , $K_3Fe(CN)_6$, $Ce(SO_4)_2$, перекисями, радикалами RO_2 RO и др.) сопровождается образованием свободных феноксильных радикалов, зарегистрированных во многих случаях методом э.п.р. (1). Принято считать, что окисление фенолов включает стадию отрыва атома водорода от гидроксильной группы, приводящую к феноксильным радикалам

Реакция (1) обычно привлекается для объяснения механизма действия ингибиторов в реакциях автоокисления углеводородов $(Oxyd = RO_2)$ (2). В случае же ингибиторов аминного типа наряду схемой (1) был предложен механизм, включающий первопачальный перенос одного электрона от амина к радикалу RO_2 (3), который получил недавно экспериментальное доказательство на основании регистрации методом э.п.р. катион-радикалов, образующихся при этом из амина (4). Учитывая это, представляет интерес выяснение возможности протекания подобной реакции при окислении фенолов. Естественно, что наиболее прямым доказательством первоначального переноса не атома водорода, а одного электрона от фенола к окислителю является регистрация спектров э.п.р. образующихся при этом катион-радикалов из фенола. К сожалению, в литературе отсутствуют сведения о строении и поведении катион-радикалов, образующихся при окислении замещенных фенолов. Имеется лишь указание на то, что соответствующие частицы были зарегистрированы при исследовании взаимодействия гидрохинона и некоторых его производных с AlCl₃ в нитрометане (⁵).

В настоящей работе методом э.п.р. мы исследовали одноэлектронное окисление ряда фенолов, содержащих в o- и n-положениях различные заместители (табл. 1).

Для окисления фенолов использовали кислоты Льюнса (SnCl₄, TiCl₄, SbCl₅, AlCl₃, AlBr₃ NbCl₅); реакцию проводили в тщательно эвакупрованных растворах галоидалкилов (C_2H_5Cl , C_2H_5Br , $uso-C_3H_7Br$) и нитроалкилов (C_4NO_2 , $C_2H_5NO_2$) при температурах $-90 \div 0^\circ$.

При окислении фенола (I) при $-80 \div -60^\circ$ наблюдается дублетный спектр э.п.р. (1:1) с константой расщепления a=4,12 гс (рис. 1a). При повышении температуры до -30° интенсивность первоначального сигнала уменьшается и возникает новый семикомпонентный спектр, отвечающий, по-видимому, вторичным продуктам. Замена водорода гидроксильной группы фенола I на дейтерий приводит к изменению вида спектра э.п.р. Он представляет собой синглет с $\Delta H=3,90$ гс. При повышении температуры этот сигнал переходит в спектр, совнадающий со спектром вторичных продуктов окисленного легкого I.

Структура исследованных фенолов * и параметры спектров э.п.р. соответствующих катион-радикалов

№ фено- лов	Rı	R ₂	$ m R_3$	Константы расщепления, гс			
				$a_{ m OH}^{ m H}$	$a_n^{ m H}$	$a_o^{\mathbf{H}}$	$a_{_{\mathcal{M}}}^{\mathbf{H}}$
I III IV V VI VII VIII IX	Tper C_4H_9 Tper C_4H_9 Tper C_4H_9 Tper C_4H_9 H Tper C_4H_9 $u_{\partial O}$ - C_3H_7 Tper C_4H_9	$\begin{array}{c} \text{TperC}_4\text{H}_9 \\ \text{CH}_3 \\ \text{CH}_2 \left(\text{C}_6\text{H}_2\right) \left(\text{CH}_3\right) \\ \text{CH}_3 \\ \text{TperC}_4\text{H}_9 \\ \text{H} \\ \text{OH} \\ \text{OH} \\ \text{OCH}_3 \end{array}$	TperC ₄ H ₉ TperC ₄ H ₉ TperC ₄ H ₉ TperC ₄ H ₉ CH (CH ₃) C ₆ H ₅ TperC ₄ H ₉ TperC ₄ H ₉ TperC ₄ H ₉ TperC ₄ H ₉	4,12 3,60 3,90 3,20 3,20 3,63 3,20 3,10 3,20	14,43 18,90 14,20 	4,99 3,20 2,50	0,8 0,8 0,8 1,58 1,56 1,83 1,56 1,83/2,33 1,25/1,75

*
$$R_3$$
 R_1 R_2

Окисление в сравнимых условиях фенола II с метильной группой в n-положении сопровождается появлением спектра э.п.р., состоящего из квадруплета $(1:3:3:1, a_1=14,43 \text{ rc})$ дублетов $(1:1, a_2=3,60 \text{ rc})$ (рис. 16). В спектре э.п.р. окисленного фенола III наблюдается триплет $(1:2:1, a_1=48,90 \text{ rc})$ дублетов $(1:1, a_2=3,90 \text{ rc})$ (рис. 16). Следует

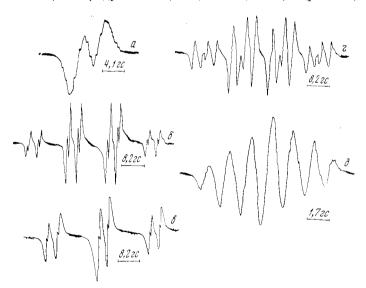


Рис. 1. Спектры э.п.р. катион-радикалов из фенолов: a — I, θ — II, e — III, e — IV, θ — V

отметить, что в компонентах дублетов рис. 1 a-s наблюдается дополнительное расщепление с $a_3 \simeq 0.7$ гс.

Закономерности в изменении структуры спектров э.п.р. в зависимости от природы n-заместителя в феноле, а также изменение спектра при переходе от фенола —ОН к фенолу —ОD свидетельствуют о том, что наблю-

давшиеся нами спектры э.п.р. отвечают катион-радикалам из фенолов, образовавшимся в результате переноса одного электрона от фенола к окислителю. С.т.с. спектров э.п.р. этих катион-радикалов обусловлена взаимодействием неспаренного электрона с протоном гидроксильной группы (дублетное расщепление, a=3,60-4,12 гс) и α -протонами n-заместителя. Дополнительное расщепление ($\sim 0,7$ гс) линий в спектрах рис. 1 $a-\epsilon$ вызвано, по-видимому, взаимодействием неспаренного электрона с m-протонами бензольного кольца. Величина этого расщепления сравнима с шириной линий ($\Delta H=1,4-2,0$ гс) и поэтому соответствующие компоненты не проявляются полностью в спектре э.п.р. Проведенная на ЭВМ IRA-5 по программе «ESR — SIM» реконструкция спектров хорошо согласуется с экспериментом и свидетельствует о том, что константа расщепления на m-протонах не превышает 0,8-0,9 гс.

Опыты с легким и дейтерированным фенолом I, показавшие зависимость структуры спектра э.п.р. окисленного фенола от наличия в гидроксильной группе водорода или дейтерия, свидетельствуют о том, что эти атомы входят в состав образующихся парамагнитных частиц. Такими частицами могут быть только катион-радикалы. Как известно, при переходе от протона к дейтерону константа с.т.с. уменьшается в 6,5 раза (¹), что, с учетом большой ширины линий в спектре э.п.р., объясняет переход дублетной структуры спектра катион-радикала фенола I в синглетную.

На рис. $1 \circ$, θ представлены спектры э.п.р. катион-радикалов, полученных в описанных выше условиях из фенолов IV, V, а в табл. 1 параметры этих спектров и спектров, полученных для соединений VI—IX.

Сравнение параметров спектров э.п.р. катион-радикалов из фенолов II-IV (табл. 1) и соответствующих нейтральных феноксильных радикалов (1) показывает, что в случае катион-радикалов константы с.т.в. с α -протонами n-заместителя имеют бо́льшую величину. Это, по-видимому, может быть связано с более электрофильным характером заряженной группировки $-\dot{O}^+-H$ по сравнению с группировкой $-\dot{O}$, что приводит к увеличению вклада n-хиноидной структуры и соответствующему повышению величины константы с.т.в. с протонами n-заместителя.

Устойчивость исследованных катион-радикалов из фенолов в сильной мере зависит от температуры, среды и природы заместителей в бензольном кольце. Как указывалось, спектры э.п.р. регистрировались только при пониженных температурах, тогда как при комнатной и более высоких температурах катион-радикалы не наблюдались из-за малой устойчивости. Катион-радикалы фенолов II, IV устойчивы в среде галоидалкилов. При окислении фенола II в нитроэтане катион-радикалы обнаружить не удается, а спектр э.п.р. катион-радикала из IV мгновенно превращается в сложный спектр из 15 групп триплетов. Катион-радикал из VI устойчив как в C_2H_5 Br, так и в нитроалкилах, тогда как катион-радикалы из V в бромистом этиле малоустойчивы.

Полученные данные позволяют предложить следующий механизм окисления фенолов. Вначале происходит образование комплекса фенол — окислитель, в котором затем происходит перенос одного электрона от фенола к окислителю. Образовавшиеся при этом катион-радикал из фенола и молекула окислителя с полученным электроном могут претерпевать дальнейшие превращения как в «клетке», так и вне ее. В частности, катион-радикал из фенола может распадаться на нейтральный феноксильный радикал и протон, как это хорошо известно для аминных катион-радикалов (6).

При применении в качестве окислителя иона металла переменной валентности в результате переноса электрона происходит снижение его валентности, а в случае галогенидов алюминия перенос электрона осуществляется на катион [AlHal₂]⁺, образованный при диссоциации Al₂Hal₆.

Можно полагать, что взаимодействие фенолов с разнообразными радикалами (Rad') и, в частности, первичный акт действия фенольных ингиби-

торов также включает первоначальный перенос одного электрона с последующей диссоциацией образовавшегося катион-радикала.

Институт физической химии им. Л. В. Писаржевского Академии наук УССР Киев Поступило 22 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Д. Походенко, Феноксильные радикалы, Киев, 1969, ² Н. М. Эмануэль, Е. Т. Денисов, З. К. Майзус, Ценные реакции окисления углеводородов в жидкой фазе, «Наука», 1965. ³ С. Ј. Реdersen, Ind. and Eng. Chem., 48, 1881 (1956). ⁴ Д. Г. Победимский, А. Л. Бучаченко, М. Б. Нейман, ЖФХ, 42, 1436 (1968); Е. Г. Фурман, Т. М. Абрамова и др., Теоретич. и эксп. хим., 6, 770 (1971). ³ W. T. Forbes, P. D. Sullivan, J. Am. Chem. Soc., 88, 2862 (1966); А. Р. Вагаваs, W. F. Forbes, P. D. Sullivan, Canad. J. Chem., 45, 267 (1967); Р. D. Sullivan, J. Magnetic Res., 5, 438 (1971). ⁶ L. Horner, J. Polymer Sci., 18, 438 (1955); Г. А. Разуваевидр., Журн. орг. хим., 1, 79 (1965).