ХИМИЯ

И. А. РАТЬКОВСКИЙ, Б. А. БУТЫЛИН, Г. И. НОВИКОВ. В. П. ОРЛОВСКИЙ, Е. А. ИОНКИНА

МАСС-СПЕКТРОМЕТРИЧЕСКОЕ И ТЕНЗИМЕТРИЧЕСКОЕ ИССЛЕПОВАНИЕ ОРТОФОСФАТА ЛАНТАНА

(Представлено академиком И. В. Тананаевым 14 XI 1972)

Термодинамические характеристики фосфатов известны лишь для отдельных представителей и получаются они, как правило, с помощью низкотемпературных методов (калориметрия, произведение растворимости и т. п.). Широкому использованию высоких температур препятствует отсутствие установленного химизма термического разложения фосфатов. В настоящей работе для изучения термодинамических свойств фосфатов используются масс-спектрометрический метол, оснащенный эффузиолной ячейкой Кнудсена, и тензиметрический метол с кварцевым мембранным нуль-манометром.

Масс-спектрометрическое исследование проводилось на приборе (1) по методикс, описанной ранее (2). Апализируемый образец (навеска не более 0.02 г) испарядся из эффузионной ячейки с вкладышем из графита с пироуглеродным покрытием (процесс восстановления) и окиси алюминия (пропесс диссопиации), именуемые в дальнейшем как системы I и II соответственно. Нагрев ячейки осуществлялся электронной бомбардировкой. Температура контролировалась термопарой класса ПП-1 и оптическим пирометром ОППИР-017. Суммарная ошибка в определении давления пара оценивалась по изотермическому испарению серебра (3) и не превыша-

Потенциалы появления AP определялись по методу (4). В качестве реперных точек использовались Ад, Н2О, СО2. В масс-спектре пара при понизирующем напряжении 70 эв при средней температуре $1460^\circ\,\mathrm{K}$ (система I) были зарегистрированы ионные токи, соответствующие P_1^+ , P_2^+ , P_3^+ , P_4^+ , PO^+ в соотношении 0.43:1:0.07:0.2:0.06. Отчетливо фиксировался пик CO+, в значительной степени регулируемый заслонкой. Для системы II, $T_{\rm cp}=1800^\circ$ K, регистрировались ионные токи, соответствующие ${
m P_1}^+, {
m PO}^+,$ PO_{2}^{+} в соотношении 0.02:1:0.2. Одновременно фиксировалось увеличение пика O_2^+ , однако из-за значительного «фона» на m/e=32 количественная интерпретация O₂⁺ затруднена. При повышении температуры 2000° К регистрировались ионы La+ и LaO+ в соотношении 0.2:1.

Из графика $\lg(I+T) = f(1/T)$ определена зависимость соответствующих ионных токов от температуры $(\bar{L}_{\scriptscriptstyle T})$. Для системы I, в диапазопе температур $1440-1630^{\circ}$ K, $P_2^+=126\pm3$ ккал/моль, $AP=12.1\pm0.5$ и $11.2\pm$ $\pm~0.5~$ ов соответственно. Сделан вывод, что паровая фаза в системе I состоит из P_2 и CO, а в системе II- из PO_2 и O_2 . Методом полного изотермического испарения в этих системах было определено давление пара при температурах $1800, 2030^{\circ}$ К и $1575, 1630^{\circ}$ К для P_2 и PO_2 соответственно, с последующим пересчетом на низкие температуры по уравнению Ингрэма (5). Давление пара P₂ и PO₂ для процессов I и II:

$$2 [LaPO_4] + 5 [C] = [La_2O_3] + (P_2) + 5 (CO),$$
 (I)

$$2 [LaPO_4] = [La_2O_3] + 2 (PO_2) + \frac{1}{2}(O_2)$$
(II)

Термодинамические характеристики процессов термической диссоциации и восстановления ортофосфатов лантана

Состав пара	L_T , ккал/моль	Процесс				Образование из про-	
		$\Delta H_T^0,$ ккал/моль	$\Delta S_T^0,$ ккал моль	$\Delta H_{298}^{0},$ ккал/моль	ΔS ⁰ ₂₉₈ , ee	$\Delta H_{f,298}^0,$ ккал/моль	$S_{f,\ 298}^{0},\ _{9e}$
Масс-спектрометрический метод Кпудсена							
(PO_2)	126±3	315 ± 8	115 ± 2	311±8	112 ± 2	441 ±8	33 ± 3
(O ₂) (P ₂) (CO)	126±3	758±18	344 ± 6	738±18	326 ± 6	476 ± 26	47 ±8
Тензиметрический метод							
(P2)(CO)	_	356 ± 5	241 ± 3	345 ± 10	231 ± 6	435±8	40 ± 6

удовлетворительно описывается уравнениями:

$$\lg P_{\text{MM. pt. ct.}} = 15,3800 - \frac{27458}{T} (\pm 40\%), \tag{1}$$

$$\lg P_{\text{MM. pt. ct.}} = 12,1868 - \frac{26667}{I'} (\pm 20\%).$$
 (2)

Процесс восстановления LaPO $_4$ графитом был изучен также с помощью тензиметрического метода с мембранным кварцевым нуль-манометром (6) в интервале температур $1260-1400^\circ$ К. Результаты расчета ΔH_T^0 и ΔS_T^0 процессов термической диссоциации и восстановления LaPO $_4$, а также вычисленные по этим данным стандартные значения $\Delta H_{f,\,298}^0$ и $S_{f,\,298}^0$ приведены в табл. 1. При расчете использованы данные ($^{7-9}$). Расхождение в величинах $\Delta H_{f,\,298}^0$ и $S_{f,\,298}^0$ процесса восстановления LaPO $_4$ может быть объяснено недостаточно развитой поверхностью графитового тигля при массспектрометрическом исследовании, что подтверждается наличием в массспектре ионов PO $^+$ и P_4^+ .

Институт общей и неорганической химии им. Н. С. Курнакова Академии наук СССР Москва

Поступило 2 X 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. А. Ратьковский, Б. А. Бутылин, Г. И. Новиков, Приборы и техн. эксп., № 6, 286 (1970). ² С. А. Щукарев, Г. А. Семенов, И. А. Ратьковский, ЖНХ, 14, 3 (1969). ³ П. А. Акишип, В. И. Белоусов, Л. Н. Сидоров, ЖНХ, 8, 1520 (1963). ⁴ К. Нопід, Ј. Сhem. Phys., 19, 1305 (1951). ⁵ М. Ингрэм, Дж. Дроуарт, Сборн. Исследование при высоких температурах, ИЛ, 1962, стр. 174. ⁶ Г. И. Новиков, А. В. Суворов, Зав. лаб., 25, 6, 750 (1959). ⁷ Г. Б. Наумов, В. А. Рыжепко, И. Л. Ходаковский, Справочник термодинамических величин, М., 1971. ⁸ М. Х. Карапетьянц, М. Л. Карапетьянц, Основные термодинамические константы неорганических и органических веществ, М., 1968. ⁹ Г. Г. Гвелесиани, Д. Ш. Цагарейшвили и др., Тез. III Всесоюзн. совещ. по фосфатам, 1, Рига, 1971, стр. 133.