Доклады Академии наук СССР 1972. Том 205, № 6

УДК 541.183 + 535.27

ФИЗИЧЕСКАЯ ХИМИЯ

Ф. М. БОБОНИЧ, М. А. ПИОНТКОВСКАЯ, А. М. ЕРЕМЕНКО, О. М. ТАРАНУХА, И. Е. НЕЙМАРК, П. Н. ГАЛИЧ

ИССЛЕДОВАНИЕ МЕСТ ЛОКАЛИЗАЦИИ ИОНОВ Mn²⁺ В ПОЛИКАТИОННЫХ ФОРМАХ ЦЕОЛИТА ТИПА У МЕТОДАМИ ЛЮМИНЕСПЕНТНОЙ СПЕКТРОСКОПИИ И Э.П.Р.

(Представлено академиком М. М. Дубининым 14 II 1972)

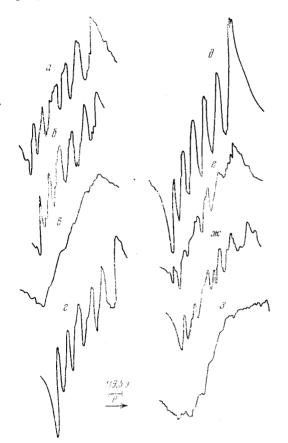
Адсорбционные и каталитические свойства синтетических цеолитов в основном зависят от природы компенсирующих ионов. У цеолитов типа фожазита обменные катионы располагаются в различных кристаллографических позициях: в гексагональных призмах, соединяющих кубооктаэдры (S_1) , в плоскости шестичленных входных окон в кубооктаэдры (S_{11}) и на стенках больших полостей, координируя с четырьмя атомами кислорода (S_{111}) (1). Как показали наши опыты (2) и опыты других авторов (3), процесс дегидратации цеолитов вызывает миграцию ионов из одних кристаллографических мест в другие.

Мы использовали методы люминесцентной спектроскойни и э.п.р. для определения мест локализации компенсирующих ионов у поликатионных форм фожазитов после их дегидратации. Исследования проводили на цеолитах, содержащих, наряду со щелочными и щелочноземельными катионами, ионы двухвалентного марганца. Содержание марганца в образцах составляло (3—5) · 10¹⁹ спин/г. Катион Мп²⁺ выбран в качестве иона-индикатора, поскольку его спектры э.п.р. в других кристаллических системах хорошо изучены (4). Это же относится к спектрам излучения кислородсодержащих кристаллюфосфоров, активированных марганцем (5-7). Кроме того, Мп²⁺ способен замещать ионы патрия во всех кристаллографических позициях структуры фожазита, не вызывая заметного изменения параметров кристаллической решетки в процессе попного обмена.

Мы производили исследование спектров э.п.р. и люминесценции на марганецсодержащих фожазитах, дегидратированных в течение 2 час. при температуре 400° С и давлении 10⁻⁵ тор. Спектры э.п.р. регистрировани на стандартном радиоспектрометре 3-см дианазона длин воли РЭ-1301 при температурах 77° К и комнатной. Спектры люминесценции фотографировали на кварцевом спектрографе ИСП-28 при 77° К. Возбуждение люминесценции осуществлялось монохроматическим светом с длиной волны 313 мц.

Обпаружена люминесценция марганецсодержащих фожазитов в области от 340 до 600 мµ. Полосы излучения Mn^{2+} в различных катионзамещенных формах фожазитов приведены в табл. 4. Согласно (6), полосы собственного свечения Mn^{2+} в кристаллофосфорах расположены в области спектра с длиной воли больше 400 мµ, что, по-видимому, можно распространить и на изучаемые образны. Отнесение более коротковолновой полосы спектра (от 340 до 400 мµ) сейчас произвести трудно, однако можно преднолагать, что се появление также связано с присутствием ионов Mn^{2+} в пеолитах. Прпрода компенсирующего пона-партиера Mn^{2+} влияет на распределение интенсивности полос люминесценции в видимой области спектра, что пллюстрируется данными, приведенными в табл. 1. На малонитенсивную коротковолновую полосу присутствие других компенсирующих нонов не оказывает влияния.

Катионзаме- шенная фор- ма цео лита	Степень ион- ного обмена	Синяя по- лоса 400—460 макс. 435 мµ	Зеленан полоса 500—560 макс. 520 мµ	Оранже- вая полоса 560—580 макс. 570 мµ	Катионзаме- щенная фор- ма цеолита	Стецень ион- пого обмена	Синяя по- лоса 400—160 макс. 435 мµ	Зеленая полоса 500—560 манс. 520 мµ	Оранже- вая полоса 560—580 макс. 570 мµ
LıNaMnY NaMnY KNaMnY CsNaMnY	65 96 69	Ср. Ср. 	Ср. —	C. C. C.	MgNaMnY CaNaMnY SrNaMnY BaNaMnY	73 82 80 77	Ср. Ср. Ср.	Ср. О. сл. О. сл.	G. G. Co.


Для всех изученных катионзамещенных форм (кроме цеолитов KNaMnY и BaNaMnY) наиболее ярко выражена в спектрах люминесценции полоса в оранжевой области. Это указывает на преимущественно октаэдрическое окружение атомами кислорода ионов Mn^{2+} в структуре фожазитов. Симметрией искаженного октаэдра в решетках цеолитов X и Y обладают позиции S_1 . Кроме того, ионы Mn^{2+} способны сохранить высокую симметрию лигандного окружения за счет образования аквакомплексов с остаточными молекулами воды *. При этом, в соответствии с предположением для ионов Cu^{2+} в работе (8), лигандное окружение марганца может достраивать кислород алюмокремнийкислородного каркаса.

Приведенные данные согласуются с широко распространенным мнением (5-7), что цвет свечения активированных марганцем кристаллофосфоров, содержащих кислород, определяется окружением марганца: люминесценция в зеленой области возникает при окружении Mn²⁺ четырьмя, а в красной— шестью атомами кислорода. Наличие в ряде случаев синей и зеленой полос флуоресценции (см. табл. 1) позволяет сделать вывод, что, как и в стеклах (5), в цеолитах существует по крайней мере два рода центров свечения— с тетраэдрическим и октаэдрическим окружением пона Mn²⁺. Из данных табл. 1 следует, что исключение составляют образцы KNaMny и BaNaMny. Собственное свечение этих цеолитов не зарегистрировано при возбуждении в области как 313, так и 365 мµ. Отсюда следует, что ноны Mn²⁺ в этих цеолитах располагаются в кристаллографических местах с низкой симметрией окружения. По-видимому, эти места S₁₁ и S₁₁₁.

Для дополнительного подтверждения локализации ионов марганца з открытых позициях, доступных молекулам адсорбата, мы использовали также известное свойство ионов Mn²⁺ образовывать люминофоры с хиноанном и аминами. Согласно (9), при этом образуются комплексы, которые обладают красно-оранжевой люмппесценцией. Мы обнаружили интенсивное излучение в красно-оранжевой области при исследовании спектровлюминесценции фожазитов KNaMnY и BaNaMnY после адсорбции хинолина и α-пафтиламина на этих образцах. Характерно, что в случае литий-, магний-, кальций- и стронцийзамещенных форм цеолитов указанный спектральный эффект пе наблюдался. Наличие довольно интенсивной красно-оранжевой люминеспенции при адсорбции хинолина на образцах NaMnY и CsNaMnY свидетельствует о локализации некоторей части понов марганна в больших нолостях. По данным радпоспектроскопических пестечований, фожазиты KNaMnY и BaNaMnY отличались от остальных понообменных форм. Сигналы э.п.р., наблюдаемые как при комнатной температуре, так и при 77° К в цеолитах LiNeMay, NaMay, Canadiay, Manadiay, CaNaMnY и SrNaMnY, характеризуются паличнем сверхтенкой структуры (рис. 1). Лунии с.т.с. сигналов э.н.р. в указанных образиях видны не фоне широкой одиночней линии. Возинкновение этой линии может быть обусловлено катионами Mn²⁻⁻, расположенными в позициях, обладающих низ-

^{*} В цеолитах, особение со щелочноземельными катионами, остается вода даже после дегидратации в условиях вакуума при 400° С.

кой симметрией (10 , 11). Широкий синглет обнаружен нами также при исследовании дегидратированных катионзамещенных форм, цеолитов, не содержащих ионов $\mathrm{Mn^{2+}}$. Существование такого сигнала, согласно (12), может быть объяснено наличием ферромагнитных примесей в цеолитах. Следует отметить, что спектры э.п.р. $\mathrm{Mn^{2+}}$, обнаруженные в цеолитах CaNaMnY и SrNaMnY, имеют сложный характер. По-видимому, указанные спектры представляют собой наложение двух или более сигналов э.п.р. с различными параметрами сверхтонкой структуры *. Мы считаем, что ионы $\mathrm{Mn^{2+}}$ в дегидратированных при 400° С образцах CaNaMnY и SrNaMnY занимают, помимо позиций S_{I} , также места, доступные молекулам воды, где они образуют упоминавшиеся выше аквакомилексы, жестко связанные с ани-

онным каркасом цеолита. Поскольку условия симметрии в этих состояниях различны, параметры с.т.с. спектров э.п.р. ионов марганца также оказываются различными (14).

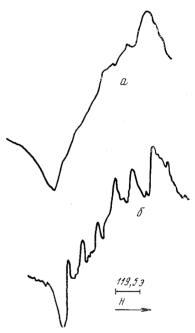


Рис. 1. Спектры э.п.р. ионов Mn^{2+} , снятые при 77° K, на образцах, дегидратированных при 400° C: a — LiNaMnY, δ — NaMnY, ϵ — KNaMnY; ϵ — CsNaMnY; δ — MgNaMnY; ϵ — CaNaMnY; ϵ — BaNaMnY

Рис. 2. Спектры э.п.р. ионов $\mathrm{Mn^{2+}}$, снятые при комнатной температуре, в воздушно-сухих образцах: a — KNaMnY, δ — BaNaMnY

В литий-, натрий-, цезий- и магнийзамещенных формах фожазитов, дегидратированных при 400° С, ионы $\mathrm{Mn^{2+}}$ находятся в малоподвижном лигандном окружении, обладающем высокой симметрией (позиции S_1 , аквакомплексы в шестичленных окнах кубооктаэдров). Наличие с.т.с. в спектрах э.п.р. $\mathrm{Mn^{2+}}$ в этих образцах обусловлено локализацией ионов марганца в кристаллографических позициях с высокой симметрией. Как было указано выше, при изучении люминесценции хинолина, адсорбиро-

^{*} Усложненные спектры, возникающие в результате наложения двух сигналов с различными параметрами с.т.с., наблюдали в дегидратированных цеолитах NaMnA (11) и CaNaX (13).

ванного на цеолитах NaMnY и CsNaMnY, мы обнаружили ионы $\mathrm{Mn^{2+}}$ и в больших полостях. Это не противоречит результатам измерения спектров э.п.р. Ионы марганца, находящиеся в больших полостях, вносят вклад в широкую компоненту сигнала при записи его на радиоспектрометре 3-сантиметрового диапазона (10 , 11).

Отсутствие с.т.с. в спектрах э.п.р. в образцах KNaMnY и BaNaMnY можно отнести за счет локализации ионов Mn^{2+} в кристаллографических позициях с низкой симметрией поля, создаваемого решеткой цеолита. В дегидратированных цеолитах это, вероятнее всего, позиции S_{111} и S_{11} (без аквакомплексов). Следует отметить, что локализация ионов Mn^{2+} в цеолите BaNaMnY в кристаллографических местах с низкой симметрией наблюдается только после вакуум-термической обработки, поскольку в воздушносухих образцах BaNaMnY часть ионов Mn^{2+} , судя по спектрам э.п.р., находится в центрах гексагональных призм. Учитывая данные работы (15) о диффузии катионов Ba^{2+} в позиции S_1 при термической тренировке, можно предположить, что эти ионы вытесняют Mn^{2+} с мест S_1 . В случае цеолита KNaMnY двухвалентный марганец не локализуется в гексагональных призмах как в дегидратированном, так и в гидратированном состоянии, о чем свидетельствует «размазывание» спектра э.п.р. в этих образцах (рис. 2).

Полученные данные подтверждают обоснованность оценки координационного состояния Mn^{2+} в решетке кристаллов фожазита по спектральному положению полос люминесценции и спектрам э.п.р., а также позволяют сделать вывод о влиянии природы обменных катионов на распределение ионов Mn^{2+} по кристаллографическим позициям в пористых кристаллах. Анализ спектров э.п.р. Mn^{2+} в гидратированных и дегидратированных цеолитах указывает на миграцию компенсирующих ионов в процессе дегидратации поликатионных форм фожазитов.

Институт физической химии им. Л. В. Писаржевского Академии наук УССР Поступило 31 I 1972

Институт высокомолекулярных соединений Академии наук УССР Киев

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ D. W. Breck, J. Chem. Educ., 41, 678 (1964). ² O. M. Тарануха, П. Н. Галич и др., Всесоюзн. совещ. по неорганическим ионообменным материалам. Тез. докл., Л., 1970, стр. 21. ³ Х. М. Миначев, Н. В. Мирзабекова и др., Изв. АН СССР, сер. хим., 1969, 2346. ⁴ С. А. Альтшулер, Е. М. Козырев, Электронный парамагнитный резонанс, М., 1961. ⁵ В. В. Осико, ДАН, 121, № 3, 507 (1958). 6 М.-Л. Ю. Алласалу, Изв. АН СССР, сер. физ., 23, № 11, 1360 (1959). 7 С. Г. Валяшко, С. В. Грум-Гржимайло, Спектроскопия кристаллов, М., 1966, стр. 211. ⁸ И. Д. Михейкин, Б. А. Швец, В. Б. Казанский, Кинетика и катализ, в. 3, 747 (1970). ⁹ Н. Рауеп de la Garanderie, С. R. hebd. Séances Sci., 254, 2739 (1962). ¹⁰ Н. Н. Тихомирова, Л. Г. Джашиашвили, ЖСХ, 7, 885 (1966). ¹¹ Л. Г. Джашиашвили, Н. Н. Тихомирова, Г. В. Цицишвили, ЖСХ, 8, 453 (1967). ¹² L. S. Singer, D. N. Stamires, J. Chem. Phys., 42, 3299 (1965). ¹³ Т. І. Ваггу, L. А. Lау, J. Phys. Chem. Solids, 27, 1824 (1966). ¹⁴ В. В leaney, R. Rubins, Proc. Phys. Soc., 77, 103 (1961); 78, 778 (1961). ¹⁵ А. Dyer, R. B. Gettins, J. G. Brown, J. Inorg. and Nucl. Chem., 32, № 7, 2389 (1970).