УДК 541.128 <u>ХИМИЯ</u>

А. М. СОКОЛЬСКАЯ, А. Б. ФАСМАН, Н. В. АНИСИМОВА, А. П. ГОРОХОВ, академик АН КазССР Д. В. СОКОЛЬСКИЙ

ГИДРИРОВАНИЕ НЕПРЕДЕЛЬНЫХ СОЕДИНЕНИЙ НА КАТАЛИЗАТОРАХ ИЗ МЕТАЛЛОВ VIII И II ГРУПП

Реакция гидрирования ацетиленовых и дисповых соединений на металлах VIII группы протекает неселективно, хотя первый и второй моли водорода обычно присоединяются с разными скоростями (1-3). Наиболее избирательным катализатором является палладий, но и в этом случае, наряду с алкенами, образуются соответствующие алканы.

В настоящей работе изучено гидрирование *н*-гексина-1, диметилэтинилкарбинола (ДМЭК), изопрена и *н*-гексена-1 на смешанных катализаторах, состоящих из никеля, палладия, цинка и кадмия. Гидрирование проводили в каталитической утке по методу (4), навеска катализатора в каждом опыте составляла 2 г.

Скорости гидрирования *н*-гексина-1 на изученных нами катализаторах с увеличением содержания металла VIII группы возрастают, а селективность проходит через максимум (рис. 1, табл. 1) *. Значение потенциала

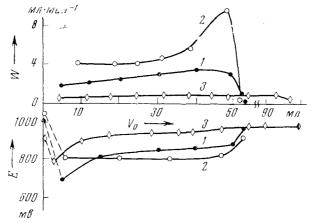


Рис. 1. Гидрирование n-гексина-1 ($A_{2\Pi_2}=400$ мл) в этаноле (25 мл) при 20° на Pd-Zn (I), Pd-Cd (I), Ni-Zn (I). Содержание Pd-0.05 вес.%; Ni-0.5 вес.%

насыщения катализатора водородом E_0 свидетельствует о щелочном характере его поверхности. Смещение потенциала ΔE в положительную сторону к моменту поглощения 20 мл H_2 (из 100 мл) с увеличением количества напладия и никеля уменьшается. Близкие закономерности наблюдаются и при гидрировании изопрена (рис. 2, табл. 1). μ -Гексен-1 на Pd-Zn- и Pd-Cd-катализаторах в сравнимых условиях не гидрируется.

^{*} Хроматографический анализ углеводородов проводился на фазе 15% трисцианэтоски-пропана на целите-545, длина колонки 3,5 м; ДМЭК — 20% ПЭГ-2000 па ИНЗ-600, длина колонки 2,0 м.

Табли**ц**а 1 Гидрирование непредельных соединений ($A_{2{
m H}_2}=100$ мл) на смешанных катализаторах в этаноле (25 мл)

	№ Гексин-1			Изопрен				дмэк					
Катали- затор	Содержание [металла VIII группы, вес.	E ₀ , MB	W, мл∙мин−1	ΔE , MB	выход оле- финов, %	E_0 , MB	W, мл∙мин−1	ΔE , MB	выход оле- финов, %	Е, МВ	W, MH-1	ΔE , MB	выход оле- финов, %
Pd - Zn $Pd(20 Mr)$ $Pd - Cd$ $Ni - Zn$	0,025 0,05 0,25 0,5 1,0 2,5 100,0 0,05 0,5 0,025	1000 1040 1030 1000	2,1 2,5 4,0 10,0 12,0 15,0 12,0 4,0 13,0 0,1	300 140 90 20 20 20 330 140 120 120	65 66 88 88 91 75 0 45 85 37	500 1080	$ \begin{array}{c c} 4,0 \\ 5,0 \\ 18,0 \\ 25,0 \\ \hline \\ 19,0 \\ 7,0^* \\ 26,0 \\ 0 \end{array} $	310 190 150 120 — 100 100 100 440	97 93 91 90 — 90 36 80	980 1060 1040 1060 1070 610 1020 1030 He re	1,0 3,8 4,9 4,8 5,5 5,6 0,3 3,2	100 30 0 0 0 - 120	79 93 96 96 97
	$0,125 \\ 0,5$	1010 1000 1020	$0,4 \\ 0,5 \\ 0,8$	40 70 50	20 94 94	970 1000 1080	$\begin{bmatrix} 1,0 \\ 2,0 \\ 2,2 \end{bmatrix}$	460 330 90	76 77 78	» » »	» » » »	l	

^{*} Начальная скорость, затем она резко падает во времени, реакция прекращается после поглощения $22~\mathrm{mz}$ H_2 .

 $\label{eq:Tafn} {\rm Tafnnqa} \ 2$ Гидрирование диметилэтинилкарбинола ($A_{2{\rm H}_2}\!=\!100\,$ мл) в воде (25 мл) на смещанных катализаторах

Катализа- тор	Pd (Ni), вес.%	W, мл·мин ⁻¹	E_0 , mb	ΔE , MB	Выход ДМВК, %	
Pd →	0,025 0,05 0,25 0,5 1,0 2,5 100,0	2,2 2,6 3,4 3,8 5,5 6,0 1,5	980 1020 1010 1070 1080 1070 360	20 0 0 0 0 0 0 140	91 93 95 99 98 72 Гидрируется до конца	
Pd — Cd	$\substack{0,05\\0,5}$	$^{2,0}_{2,2}$	1010 1010	0	85 97	
Ni — Zn	$\begin{bmatrix} 0,25 \\ 0,5 \\ 1,0 \end{bmatrix}$	$0,1 \\ 0,2 \\ 0,4$	900 900 900	480 370 40	Гидрируется до конца То же	
Ni — Cd	Не гиду	опрует				

B случае гидрирования ДМЭК в этаноле на Pd-Zn-катализаторах скорость реакции и селективность с увеличением количества палладия возрастают, а смещение потенциала уменьшается до нуля.

На Ni — Zn- и Ni — Cd-катализаторах ДМЭК в этих условиях не гидрируется. В присутствии Pd — Zn- и Pd — Cd-катализаторов гидрирование ДМЭК в воде до диметилвинилкарбинола (ДМВК) протекает с выходом последнего до 99% (рис. 3, табл. 2). На Ni — Zn-катализаторах в воде ДМЭК гидрируется с малой скоростью до изоамилового спирта. Ni — Cd-катализаторы в этих условиях неактивны.

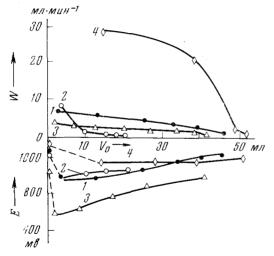
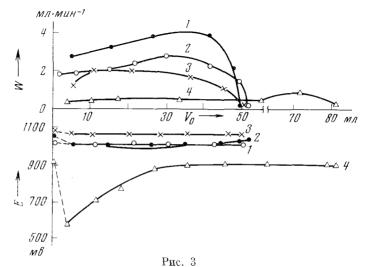



Рис. 2. Гидрирование изопрена $(A_{2}u_{2}=400 \text{ мл})$. I-3- условия те же, что на рис. 1; 4- Pd — Cd (0.5 вес.% Pd)

Рис. 3. Гидрирование ДМЭК $(A_{2\text{H}_2}=100\text{ мл})$ в этаноле и в воде (25 мл). $I,\ 2-\text{Pd}-\text{Zn};\ 3-\text{Pd}-\text{Cd};\ 4-\text{Ni}-\text{Zn}$. Содержание Pd-0.05 вес.%; Ni-0.5 вес.%

При сравнении данных, полученных на изученных катализаторах, с индивидуальными палладием и никелем, оказалось, что Zn и Cd резко увеличивают их селективность в реакции гидрирования ацетиленовых и диеновых соединений.

Таким образом, описанные катализаторы могут быть рекомендованы для препаративных синтезов этиленовых спиртов из алкинов, диснов и их произволных

Институт органического катализа и электрохимии Академии наук КазССР Алма-Ата Поступило 16 IX 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Д. В. Сокольский, Гидрирование в растворах, Алма-Ата, 1962. ² Р. N. R v-1 and er. Catalytic Hydrogenation over Platinum Metals, N. Y. — London, 1967. ³ А. М. Сокольская, Н. В. Анисимова, Гидрогенизация соединений с сопряженными углерод — углеродными кратными связями, Алма-Ата, 1972. ⁴ Д. В. Сокольский, А. М. Сокольская, Металлы — катализаторы гидрогенизации, Алма-Ата, 1970.