УДК 546.65:547.13

ФИЗИЧЕСКАЯ ХИМИЯ

Член-корреспондент АН СССР Г. Г. ДЕВЯТЫХ, Г. К. БОРИСОВ, Л. Ф. ЗЮЗИНА, С. Г. КРАСНОВА

ДАВЛЕНИЕ НАСЫЩЕННОГО ПАРА ЦИКЛОПЕНТАДИЕНИЛЬНЫХ СОЕДИНЕНИЙ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ПОДГРУППЫ ИТТРИЯ

Целью настоящей работы было изучение давления насыщенного пара трициклопентадиенилов иттрия, тербия, диспрозия, гольмия, эрбия, тулия, иттербия и лютеция. Исследуемые соединения получали, очищали и анализировали по $(^1,^2)$. Содержание примесей в полученных препаратах не иревышало $\sim 1\cdot 10^{-2}\,\%$. Измерение давления насыщенного пара проводилось статическим методом с использованием мембранного стеклянного нуль-манометра. Точность измерения давления составляла $0.5\,$ мм рт. ст. Колебание температуры термостата не превышало $0.2^{\circ}\,$ С. Измерения проводились от температуры, при которой давление пара составляло $2-5\,$ мм рт. ст., до температуры, при которой становилась заметной скорость разложения исследуемого вещества. Значения давления пара, полученные при нагревании и охлаждении образцов, хорошо совпадали. Результаты измерений описывались уравнением

$$\lg P = A - B / T, \tag{1}$$

где P — давление насыщенного пара над твердой или жидкой фазой, мм рт. ст.; T — температура, °K. Значения коэффициентов A и B уравнения (1), полученные при обработке экспериментальных данных на ЭВМ по методу наименьших квадратов с доверительной вероятностью 0,95, приведены в табл. 1.

Из температурной зависимости давления насыщенного пара были определены значения теплот сублимации, испарения и плавления. Совместным решением уравнений зависимости давления насыщенного пара от темпе-

Таблица 1 Коэффициенты уравнения (1)

Соединение	Со с тояние конденсированной фазы	Температур- ный интервал, °С	A	В
1-	N'C - NOT N	DER GELLENE		- 111
Y (C5H5)3	Кристаллическое	210-285	$11,23\pm0,32$	5177 ± 16
Y (C5H5)3	Жидкое	290-335	7.95 ± 0.90	3333 ± 52
Tb (C ₅ H ₅) ₃	Кристаллическое	220—310	$11,40\pm0,16$	5420 ± 8
Tb (C5H5)3	Жидкое	315—350	$7,74\pm0,50$	3270 ± 30
Dy (C5H5)3	Кристаллическое	220—295	$11,66\pm0,22$	5496 ± 11
Dy (C5H5)3	Жидкое	300-330	$8,53\pm0,48$	3710 ± 28
Ho (C ₅ H ₅) ₃	Кристаллическое	230-290	$11,44\pm0,21$	5333 ± 11
Ho (C ₅ H ₅) ₃	Жидкое	290—330	$8,47\pm0,38$	3659 ± 22
Er (C ₅ H ₅) ₃	Кристаллическое	230—285	$11,04\pm0,31$	5076 ± 16
Er (C ₅ H ₅) ₃	Жидкое	290-325	$8,06\pm0,35$	3400 ± 20
$Tm (C_5H_5)_3$	Кристаллическое	210—275	$11,29\pm0,16$	5170 ± 8
Tm (C5H5)8	Жидкое	275—315	$8,44\pm0,21$	3607 ± 12
Yb (C5H5)3	Кристаллическое	195—260	$11,03\pm0,29$	5016 ± 14
Lu (C5H5)3	Кристаллическо	205-260	$13,73\pm0,32$	6423 ± 16
Lu (C5H5)3	Жидкое	265-280	$8,72\pm0,30$	3739 ± 16

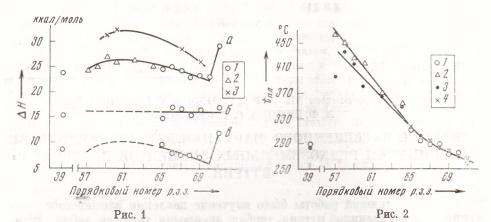


Рис. 1. Зависимость теплоты фазовых переходов трициклопентадиенилов р.з.э. от порядкового номера элемента. a — теплота сублимации, b — теплота испарения, b — теплота илавления; b — настоящая работа, b — по (b).

Рис. 2. Зависимость температуры тройной точки трициклопентадиенилов р.з.э. от порядкового номера элемента. 1 — настоящая работа, 2 — по (3), 3 — по (5), 4 — по (6)

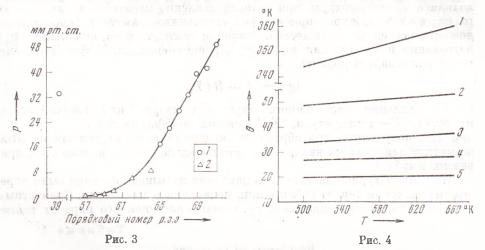


Рис. 3. Зависимость давления насыщенного пара трициклопентадиенилов р.з.э. при 260° C от порядкового номера элемента. 1 — настоящая работа, 2 — по (³)

Рис. 4. Значения характеристической температуры Эйнштейна для различных моделей движения молекул в узле кристаллической решетки трициклопентадиенила иттрия. 1- колрбание вдоль осей x, y, z и свободное вращение относительно этих осей; 2- колебание вдоль осей x, y, z, свободное вращение относительно оси z, либрация относительно осей x, y; 3- колебание вдоль осей x, y, z и либрация относительно этих осей; 4- колебание вдоль осей x, y, z свободное вращение относительно оси цепочки z и либрация относительно осей x, y; 5- колебание вдоль осей x, y, z либрация относительно осей z, y, z и оси цепочки z

ратуры над твердой и жидкой фазами была вычислена температура тройной точки для всех исследованных соединений, за исключением трициклопентадиенила иттербия, температура тройной точки которого определялась прямым методом по (3). Все величины вычислены с доверительной вероятностью 0,95 и приведены в табл. 2.

Из рис. 1 видно, что теплота фазовых переходов слабо зависит от порядкового номера элемента. Исключением является трициклопентадиенил лютеция, значения теплот сублимации и плавления которого заметно выше. Из рис. 2 и 3 видно, что с увеличением порядкового номера элемента уменьшается температура тройной точки и возрастает давление насыщенного

пара циклопентадиенильных соединений р.з.э. Увеличение летучести и понижение температуры плавления можно объяснить тем, что с увеличением порядкового номера и уменьшением ионного радиуса увеличивается экранирование центрального иона лигандами, что приводит к уменьшению межмолекулярного взаимодействия.

Из температурной зависимости давления насыщенного пара статистическим методом были рассчитаны значения характеристической температуры Эйнштейна для кристаллической решетки трициклопентадиенилов

Таблица 2 Теплота фазовых переходов и температура тройной точки циклопентадиения вных соединений р.з.э. подгруппы иттрия

Соединение	Теплота, ккал/моль			T-pa
	сублимации	испарения	плавления	тройной точки, °С
Y $(C_5H_5)_8$ Tb $(C_5H_5)_8$ Dy $(C_5H_3)_8$ Ho $(C_5H_5)_8$ Er $(C_5H_5)_8$ Tm $(C_5H_5)_8$ Yb $(C_5H_5)_8$ Lu $(C_5H_5)_8$	$23,7\pm0,8 \\ 24,8\pm0,4 \\ 25,1\pm0,5 \\ 24,4\pm0,5 \\ 23,2\pm0,8 \\ 23,6\pm0,4 \\ 23,0\pm0,7 \\ 29,4\pm0,7$	15,2+2,415,0+1,417,0+1,316,7+1,015,6+0,916,5+0,617,1±0,8	8,5±2,5 9,8±1,5 8,1±1,4 7,7±1,1 7,6±1,2 7,1±0,7 12,3±1,1	$\begin{array}{c} 289 \pm 2 \\ 314 \pm 2 \\ 297 \pm 2 \\ 290 \pm 2 \\ 289 \pm 2 \\ 275 \pm 1 \\ 274 \pm 1 \\ 262 \pm 1 \end{array}$

р.з.э. На рис. 4 приведена температурная зависимость характеристической температуры Эйнштейна для различных моделей движения молекул в узле кристаллической решетки триниклопентадиенила иттрия. Для других трициклопентадиенилов р.з.э. эта зависимость имеет аналогичный характер. Как видно, слабая зависимость от температуры имеет место для моделей 4 и 5, предполагающих наличие цепочек в кристаллах исследуемых соединений. Это находится в согласии с данными работы (7) по рентгеноструктурному анализу трициклопентадиенила самария.

Институт химии Академии наук СССР 20 II 1973 Горький

Горьковский государственный университет им. Н. И. Лобачевского

цитированная литература

¹ С. Г. Краснова, Г. К. Борисов, Г. Г. Девятых, ЖНХ, 16, 1733 (1971).
² Г. Г. Девятых, С. Г. Краснова и др. ДАН, 193, 1069 (1970).
³ Г. Г. Девятых, Г. К. Борисов, С. Г. Краснова, ДАН, 203, 110 (1972).
⁴ Н. О. Наид, J. Organomet. Chem., 30, 53 (1971).
⁵ J. M. Birmingham, G. Wilkinson, J. Am. Chem. Soc., 78, 42 (1956).
⁶ E. O. Fischer, H. Fischer, J. Organomet. Chem., 3, 181 (1965).
⁷ C. Wong, T. Lee, Y. Lee, Acta crystallogr., B25, 2580 (1969).