УДК 518:517.948

MATEMATUKA

Б. С. ЕЛЕПОВ, Г. А. МИХАЙЛОВ

АЛГОРИТМ «БЛУЖДАНИЯ ПО СФЕРАМ» ДЛЯ УРАВНЕНИЯ $\Delta u - \mathbf{c} u = -\mathbf{g}$

(Представлено академиком Г. И. Марчуком 25 XII 1972)

В работе Мюллера (1) был предложен процесс «блуждания по сферам» для решения уравнения Лапласа. С помощью довольно сложных рассуждений авторы настоящей работы ранее обобщили (2) этот процесс на случай уравнения $\Delta u-cu=-g$, исходя из вероятностного представления решения задачи Дирихле. В данной работе это сделано значительно проще на основе рассмотрения специального интегрального уравнения, форма которого определяется функцией Грина для задачи Дирихле. Предлагаемый подход позволил улучшить алгоритм «блуждания по сферам» для уравнения $\Delta u-cu=-g$ и оценить его эффективность.

Рассмотрим задачу Дирихле для уравнения $\Delta u - cu = -g$, где c > 0. Функция g(x, y, z) удовлетворяет условию Гёльдера в области D, ограниченной регулярной границей Γ , на которой задано граничное условие: $u|_{\Gamma} = \psi(x, y, z)$. Нам потребуются следующие понятия:

D'— замыкание области D; функция $d(P) = \min_{Q \in \Gamma} |P - Q|$; $\Gamma_{\varepsilon} = \{P \in E : D' : d(P) < \varepsilon\}$ — ε -окрестность границы Γ ; сфера $S(P) = \{Q \in D' : |Q - P| = d(P)\}$.

Заметим, что S(P) — максимальная из сфер с центром P, целиком лежащих в D'. Обозначим также через $s(P,\varepsilon)$ поверхность той части S(P), которая принадлежит множеству Γ_{ε} . В дальнейшем нам потребуется условие

$$\min_{P} \left(\frac{s(P, \epsilon)}{4\pi d^{2}(P)} \right) \geqslant v = v(\epsilon) > 0 \quad \text{при } \epsilon > 0$$
 (1)

Пусть $S(P^*)$ — сфера максимального раднуса, целиком лежащая в D, Q — точка касания границы Γ сферой $S(P^*)$. Проведем сферу $S_{\mathfrak{s}}$ радиуса \mathfrak{s} с центром в точке Q. Тогда площадь части сферы $S(P^*)$, целиком лежащей внутри $S_{\mathfrak{s}}$, равна $\mathfrak{n}\mathfrak{s}^2$. Следовательно, можно положить

$$v(\varepsilon) = \frac{\varepsilon^2}{4 d^2(P^*)}.$$

Пусть необходимо оценить решение $u(P_0)$ поставленной задачи в заданной точке $P_0 \subseteq D$. Из теории фундаментальных решений известно (3), что $u(P_0)$ можно представить в виде

$$u(P_{0}) = \frac{d_{0} \sqrt{c}}{4\pi d_{0}^{2} \operatorname{sh}(d_{0} \sqrt{c})} \int_{S(P_{0})} u(s) ds + \int_{|\mathbf{r} - P_{0}| < d_{0}} G(\mathbf{r}) g(\mathbf{r}) d\mathbf{r}, \qquad (2)$$

$$G(\mathbf{r}) = \frac{\operatorname{sh}[(d_{0} - |\mathbf{r} - P_{0}|) \sqrt{c}]}{4\pi |\mathbf{r} - P_{0}| \operatorname{sh}(d_{0} \sqrt{c})}, \quad d_{0} = d(P_{0}).$$

Первый интеграл в (2) — это интеграл по поверхности сферы $S(P_0)$. Соотношение (2) можно рассматривать как сопряженное (соответственно принятой в теории методов Монте-Карло терминологии) интегральное уравнение с обобщенным ядром, представляющим равномерное распределение на сфере $S(P_0)$; после введения этого ядра первый интеграл стано-

вится трехмерным. Нетрудно понять, что стандартные алгоритмы метода Монте-Карло распространяются на такие интегральные уравнения, если особенность ядра включать в плотность перехода моделируемой цепи Маркова. В данном случае из точки P_0 следует переходить на поверхность сферы $S(P_0)$; такую цепь и называют «блужданием по сферам».

Соотношение (2) необходимо дополнить равенством

$$u(P_0) = \psi(P_0), \quad P_0 \in \Gamma, \tag{3}$$

которое означает, что ядро уравнения обращается в нуль, если первый аргумент $P \in \Gamma$. Таким образом, после выхода на границу цепь следует оборвать, прибавив к оценке величину $\psi(P)$ с соответствующим весом. Указанные соображения приводят к вероятностной оценке решения, которая не реализуема, так как с вероятностью 1 «блуждания по сферам» не выходят на границу за конечное число шагов. Это связано с тем, что норма интегрального оператора в естественном для данной задачи пространстве L_1 равна 1. Далее будет построена смещенная, но реализуемая оценка.

Временно предположим, что решение задачи Дирихле известно в каждой точке множества Γ_{ϵ} . Тогда для $u(\mathbf{r})$ можно записать следующее интегральное уравнение:

$$u(\mathbf{r}) = \int_{\mathcal{D}} k(\mathbf{r}, \mathbf{r}') u(\mathbf{r}') d\mathbf{r}' + \varphi(\mathbf{r}), \tag{4}$$

где

$$k\left(\mathbf{r},\mathbf{r'}\right) = \begin{cases} \frac{d\ \sqrt{c}}{\operatorname{sh}\ (d\ \sqrt{c})}\ \delta_r(\mathbf{r'}), & \text{если} \ \mathbf{r} \not \in \Gamma_{\epsilon}, \\ 0, & \text{если} \ \mathbf{r} \in \Gamma_{\epsilon}; \end{cases}$$

$$\phi\left(\mathbf{r}\right) = \begin{cases} \frac{1}{4\pi} \int\limits_{|\mathbf{r'}-\mathbf{r}| < d} \frac{\operatorname{sh}\left[\left(d-|\mathbf{r'}-\mathbf{r}|\right)\ \sqrt{c}}{|\mathbf{r'}-\mathbf{r}|\operatorname{sh}\left(d\ \sqrt{c}\right)} g\left(\mathbf{r'}\right)d\mathbf{r'}, & \text{если} \ \mathbf{r} \not \in \Gamma_{\epsilon}, \\ u\left(\mathbf{r}\right), & \text{если} \ \mathbf{r} \in \Gamma_{\epsilon}. \end{cases}$$

Здесь $d=d(\mathbf{r})$, $\delta_{\mathbf{r}}(\mathbf{r}')$ — обобщенная плотность, соответствующая равномерному распределению вероятностей на сфере $S(\mathbf{r})$. Из условия (1), учитывая неравенство $d\overline{V}c/sh(d\overline{V}c) \leq 1$, имеем $\|K^2\|_{L_1} \leq 1 - v(\epsilon) < 1$, что обеспечивает сходимость ряда Неймана для уравнения (4) и тем самым возможность применения метода Монте-Карло. Еще раз заметим, что (4) имеет вид сопряженного интегрального уравнения. Поэтому для оценки $u(P_0)$ можно применить соотношение (см., например, выражение (5) в (5)):

$$u(P_0) = M\xi, \quad \xi = \varphi(P_0) + \sum_{n=1}^{N} Q_n \varphi(P_n).$$
 (5)

Здесь $\{P_n\}$ — цепь Маркова, которую целесообразно определить следующим образом:

 $\mathbf{r}_0(\mathbf{r}) = \delta(\mathbf{r} - P_0)$ — плотность начального распределения, $\mathbf{r}(\mathbf{r}, \mathbf{r}') = \delta_r(\mathbf{r}')$ — плотность перехода из \mathbf{r} в \mathbf{r}' , $p(\mathbf{r})$ — вероятность обрыва цепи, причем $p(\mathbf{r}) = 0$, если $\mathbf{r} \notin \Gamma_\varepsilon$ и $p(\mathbf{r}) = 1$, если $\mathbf{r} \in \Gamma_\varepsilon$.

Как уже было указано выше, эта цепь называется «блужданием по

сферам». Для такой цепи веса определяются (4) формулами

$$Q_0 = 1$$
, $Q_n = Q_{n-1} \frac{d_{n-1} \sqrt{c}}{\sinh(d_{n-1} \sqrt{c})}$, $d_n = d(P_n)$, $n = 1, 2, 3, ...$

Нетрудно заметить, что вероятность $p_1(\mathbf{r})$ обрыва цепи после очередного перехода равна вероятности непосредственного попадания из точки \mathbf{r} в Γ_{ε} и удовлетворяет неравенству $p_1(\mathbf{r}) \geqslant v(\varepsilon)$. Отсюда получаем, что среднее число переходов, определяющее среднее время t_{ε} расчетов на

ЭВМ, не превосходит $v^{-1}(\varepsilon)$. Чтобы получить более точную оценку для t_{ε} , необходимо определить плотность $f(\mathbf{r})$ распределения центров сфер $S(P_i)$ вблизи границы, так интеграл от $f(\mathbf{r})$ расходится, если граница области интегрирования приближается к Γ . Из сказанного также ясно, что для реальных задач плотность $f(\mathbf{r})$ достаточно определить вблизи плоской границы.

Простые соображения показывают, что плотность f(x) распределения центров сфер по расстоянию x от плоской границы при $x \to 0$ приближается к решению однородного интегрального уравнения с ядром, равным соответствующей плотности перехода. Далее записано это уравнение для двумерного и трехмерного случаев соответственно:

$$f^{(2)}(x) = \frac{1}{2\pi} \int_{x/2}^{\infty} \frac{f^{(2)}(x') dx'}{\sqrt{x(2x'-x)}}, \quad f^{(3)}(x) = \int_{x/2}^{\infty} \frac{f^{(3)}(x') dx'}{2x'}.$$

Для вывода этих уравнений достаточно убедиться, что плотность перехода из x' в x равна подынтегральному выражению. Прямой подстановкой легко проверить, что обоим уравнениям удовлетворяет $f(x) = cx^{-1}$. Полученный вывод был проверен прямым суммированием плотностей $f_{\mathbf{m}}^{(3)}(x)$ распределений центров сфер кратности m для заданного «источника» в точке $x_0 > 0$. Таким образом,

$$\int_{t}^{a} f(x) dx \sim c |\ln \varepsilon|, \quad a > 0.$$

Следовательно, при обрыве процесса в Γ_{ϵ} время расчетов имеет порядок $|\ln \epsilon|$. Это подтверждают результаты расчетов. Из сказанного выше ясно, что для достаточно «хороших» границ полученный порядок времени расчетов имеет место и в случае любой размерности.

Теперь можно вспомнить, что мы временно ввели нереальное предположение: решение $u(\mathbf{r})$ известно в Γ_{ϵ} . Однако вместо точных значений $u(\mathbf{r})$ в Γ_{ϵ} можно использовать приближенные значения, например беря их с ближайших точек границы, т. е полагать

$$u(\mathbf{r}) \approx \psi(\mathbf{r}^*), \quad \mathbf{r} \in \Gamma \varepsilon, \quad \mathbf{r}^* \in \Gamma, \quad |\mathbf{r} - \mathbf{r}^*| = d(\mathbf{r}) \leqslant \varepsilon.$$

В результате получаем смещенную оценку ξ_{ϵ} , среднее значение которой отличается от $u(P_{\epsilon})$ на величину порядка ϵ . Действительно, если рассмотреть выражение для разности оценок ξ и ξ_{ϵ} , то получим

$$|u - u_{\varepsilon}| = |M\{Q_N[\varphi(\mathbf{r}_N) - \varphi(\mathbf{r}_N)]\}| \leq A\varepsilon,$$

где A — некоторая константа, которая конечна вследствие ограниченности в области D производных от решения. Здесь использовано соотношение $Q_N \leqslant 1$.

Приведенные рассуждения показывают, что точность ε -приближения можно существенно увеличить с помощью экстраполяции по ε . Расчеты для различных значений ε можно проводить одновременно, т.е., проводя расчеты для некоторого ε , можно получать результаты для любого $\varepsilon_1 > \varepsilon$ без дополнительных затрат времени ∂BM ; при этом ввиду сильной зависимости оценок разность $u_\varepsilon - u_{\varepsilon_1}$ вычисляется хорошо. $\partial \phi$ фективность такой методики подтверждается расчетами.

Дисперсия полученной оценки конечна, так как ξ_{ϵ} убывает с ростом c, а при c=0 веса равны 1 и «блуждание по сферам» представляет прямое моделирование, для которого дисперсия конечна. Легко показать, что $\sigma_{\xi_{\epsilon}}/u \to 0$ при $c \to \infty$.

Далее, интеграл, выражающий $\varphi(\mathbf{r})$ при $\mathbf{r} \notin \Gamma_{\epsilon}$, можно оценивать методом Монте-Карло по одному случайному «узлу». Универсальная плотность распределения узла пропорциональна функции Грина $G(\mathbf{r})$ (2).

ENSTHOTEKA

Несмещенность такой рандомизированной оценки доказывается три-

виально с помощью повторного осреднения.

Поскольку «блуждание по сферам» не зависит от g(x, y, z), $\psi(z, y, z)$ и c, то можно одновременно проводить расчеты для различных значений характеристик задач. Это дает возможность вычислять вариации решения при небольших вариациях g, ψ и c; нетрудно написать алгоритмы вычисления соответствующих производных, которые можно использовать при решении некоторых обратных задач теории потенциала.

Для решения некоторых прикладных задач (например, задач электронно-ионной оптики) необходимо вычислять градиент потенциала, т.е. производные от решения задачи $\Delta u = -g$, $u|_{\Gamma} = \psi(x,y,z)$. В работе (6) получено выражение «весового множителя» для оценки решения уравнения Лапласа в двух точках по одним и тем же выборочным траекториям «блуждания по сферам». Используя эту идею, можно построить алгоритм непосредственной оценки производных от решения в точке $P_0 = (x_0, y_0, z_0)$. Для этого достаточно продифференцировать по x следующее выражение в точке $P_{0,x} = (x_0 + x, y_0, z_0)$:

$$u(P_0) = \int_{S(P_0)} p(\omega, x) u(s) ds + \int_{|r-P_0| < d_0} G_x(r, d_0) g(r) dr,$$
 (6)

$$x < d(P_0) = d_0,$$

где $G_x(\mathbf{r},d_0)$ — «шаровая» функция Грина в точках $P_{0,x}$ и \mathbf{r} , а $p(\omega,x)$ — ее нормальная производная $[^7]$. Здесь ω — единичный вектор направления из P_0 в P_1 (иначе $\omega=s/\left\lfloor s\right\rfloor$). Требуемый алгоритм определяется выражением

$$\begin{split} \frac{\partial u}{\partial x}(x_0, y_0, z_0) &= \frac{1}{4\pi} \int\limits_{|\mathbf{r} - P_0| < d_0} \frac{x_1 (d_0^3 - |\mathbf{r} - P_0|^3)}{d_0^3 |\mathbf{r} - P_0|^3} g(\mathbf{r}) d\mathbf{r} + \\ &+ M \left\{ \frac{3a}{d_0} \left[\sum_{i=1}^N \frac{1}{4\pi d_i} \int\limits_{|\mathbf{r} - P_i| < d_i} \frac{d_i - |\mathbf{r} - P_i|}{|\mathbf{r} - P_i|} g(\mathbf{r}) d\mathbf{r} + \psi(P_N^*) \right] \right\}, \end{split}$$

где $x_1 = x(\mathbf{r} - P_0), a = \omega_x$

Нетрудно заметить, что соотношение (6) дает возможность по одним и тем же траекториям цепи P_0, P_1, P_2, \ldots оценивать решение во всех точ-

ках шара $\lceil \mathbf{r} - P_0 \rceil < d_0$.

Оценим теперь количество R_{ε} арифметических операций, необходимое для достижения заданной погрешности ε в оценке решения. Ранее было показано, что число сфер при обрыве траектории в Γ_{ε} имеет порядок величины $|\ln \varepsilon|$. С другой стороны, чтобы вероятностная погрешность оценки была порядка ε , необходимо моделировать $\varepsilon \varepsilon^{-2}$ траекторий. Отсюда $R_{\varepsilon} \sim c_n |\ln \varepsilon| / \varepsilon^2$, где c_n —число арифметических операций, приходящееся на одну сферу в пространстве n измерений. При больших n величина c_n зависит от n линейно.

Авторы благодарны акад. Г. И. Марчуку за полезные замечания при

обсуждении работы.

Вычислительный центр Сибирского отделения Академии наук СССР Новосибирск Поступило 17 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. Е. Muller, Ann. Math. Statistics, 27, № 3, 569 (1956). ² Б. С. Елепов, Г. А. Михайлов, Журн. вычислит. матем. и матем. физ., 9, № 3, 647 (1969). ³ А. Фридман, Уравнения с частными производными параболического типа, ИЛ, 1968. ⁴ С. М. Ермаков, Метод Монте-Карло и смежные вопросы, М., 1971. ⁵ Г. А. Михайлов, Журн. вычислит. матем. и матем. физ., 9, № 5, 1145 (1969). ⁶ И. Г. Дядькин, В. Н. Стариков, там же, 5, № 5, 936 (1965). ⁷ Н. С. Кошляков, Э. Б. Глинер, М. М. Смирнов, Основные дифференциальные уравнения математической физики, М., 1962.