УДК 547.918 БИОХИМИЯ

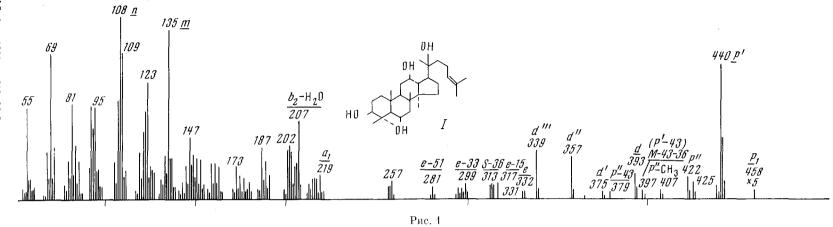
Л. И. СТРИГИНА, Т. М. РЕМЕННИКОВА, Ю. Н. ЕЛЬКИН, А. К. ДЗИЗЕНКО, В. В. ИСАКОВ, член-корреспондент Г. Б. ЕЛЯКОВ

О ПОЛУЧЕНИИ НАТИВНОГО АГЛИКОНА ПАНАКСОЗИДА А ИЗ PANAX GINSENG C. A. MEYER C ПОМОЩЬЮ ФЕРМЕНТАТИВНОГО ГИДРОЛИЗА

Химическое строение физиологически активных гликовидов женьшеня Panax ginseng C. А. Меуег интепсивно изучалось в течение ряда лет нами ($^{1-7}$) и группой японских химиков (8 , 10). Однако до настоящей работы ни одной из групп исследователей не удавалось получить нативные агликоны указанных гликовидов ферментативным гидролизом. Последнее весьма важно из-за высокой лабильности агликонов в присутствии кислот, обычно используемых для расщепления гликовидных связей (2 , 6), что проявляется в образовании артефактных агликонов. Обнаружение среди последних веществ, имеющих C_{20} —ОС H_3 -группы, отсутствующую в исходных гликовидах, делает вероятным обращение конфигурации у соседиего C_{17} -асимметрического центра в ходе гидролиза.

Об актуальности этой проблемы свидетельствует педавияя попытка Иоспока (°) получить пативный агликон при ферментации гликозидов

женьшеня с помощью культуры почвенных бактерий.


Недавно мы сообщили ($^{(1)}$), что для гидролитического расщенления гликовидов с тритерпеновыми агликонами тетрациклического и пентациклического ряда с уснехом может быть использовано инкубирование с гомогенатом печени и инщеварительным соком улитки Eulota maackii. Сейчас мы сообщаем о впервые осуществленном ферментативном расщенлении панаксозида А — тритерпенового гликозида из женьшеня (1) после 30-дневного инкубирования с пищеварительным соком улитки Eulota maackii. В результате нами были получены прогении (1) и пативный агликоп (1), который по результатам сравнения соответствующих дигидро-трикетонов отличается от ранее полученного Шибата с сотрудниками (8) после распада гинзенозида $R_{g} - 1$ (\equiv папаксозид A) по Смиту и последующего гидролиза 2N $H_{2}SO_{4}$ при компатной температуре 20S-протопапаксатриола. Мы надеемся, что изучение пативного агликона, полученного ферментативным путем, поможет внести ясность в вопрос о конфигурации боковой цени даммарановых тритерненондов. Π следения сейчас взята под сомпение (10).

Хроматографическая очистка продуктов ферментолиза дала I в виде игольчатых кристаллов с т. ил. $189-192^{\circ}$ (бензол), $[\alpha]_{D}^{20}+46,07$ (EtOAc), и.-к. спектр (CH₂CI₂); 3600 (OH), 3385 см⁻¹ (H-связанный OH). В масс-спектре I (рис. 1) обнаружены пики понов, образованных из M⁺ в результате потери C₂₀—OH (m/e 458) и последующей потери C₁₂—OH (m/e 440). Основные инки отвечают фрагментам, представленным на схеме 1, пути

образования которых установлены нами ранее (1, 7)

В я.м.р. (CDCl₃) спектре I имеются сигналы ияти ангулярных метильных групп δ (м.д.): 0,91 (6H), 0,97 (3H), 1,05 (3H), 1,47 (3H), химические сдвиги которых практически совпадают с таковыми агликонов ряда A (5). Значения химических сдвигов метильных групп боковой цепп I указывают на паличне кислородной функции прп C_{20} δ (м.д.): 1,25 (3H) и Δ 24 двойной связи δ (м.д.): 1,61 (3H), 1,68 (3H). Протон прп C_{24} дает широкий сигнал при δ 5,23 (м.д.). Протоны, стоящие при гидроксильных группах, дают сигналы δ (м.д.): 4,14 (1H— C_6), 3,57 (1H— C_{12}), 3,48 (1H— C_2). На основании

этих данных нативному агликону (I) отвечает структура I, 203 (ОН)-конфигурация которой соответствует ранее полученному 20S-протопанаксатриолу (8). Прямое сравнение полученного нами нативного агликона (I) и 20S-протопанаксатриола не было проведено из-за отсутствия заведомого образца последнего, который к тому же не получен в кристаллическом виде (⁵). Следует отметить высокую дабильность агликона І. Так, с помощью тонкослойной хроматографии в кристаллическом образце І, в течение недели стоявшем на свету, было обнаружено наличие более и менее полярных веществ. В дальнейшем, учитывая это, все операции, связанные с определением физико-химических констант, снятием спектров и получением производных (гидрирование, окисление), проводили сразу после получения хроматографически однородного образца и в отсутствие агептов содержащих кислоты. Гидрирование І в присутствии катализатора Вильштеттера дало дигидро-1 (III) в виде игольчатых кристаллов с т. пл. 231— 4° (Me-CO-Me), $[\alpha]_{p^{20}} + 34.1$ (Meoн), я.м.р. (CDCl₃) δ (м.д.): 0.85 (6H, J = 6 rg), 0.90 (6H), 0.95 (3H), 1.03 (3H), 1.14 (3H), 1.21 (3H) 4.14 $(1H-C_6)$, 3,57 $(1H-C_{12})$, 3,18 $(1H-C_3)$. Масс-спектр III идентичен ранее опубликованным масс-спектрам агликопов, полученных из дигидропанаксозида А после кислотного гидролиза (7). Прямую идентификацию III с 20S-дигидропротопанаксатриолом провести нельзя, так как последний в кристаллическом виде также получен не был (8). Окисление III хромовым ангидридом в пиридине дало кетоп (IV) в виде плотных кристаллов с т. пл. $166-169^{\circ}$ (EtOAc), $[\alpha]_{D^{20}}+5{,}33$ (EtOAc), и.-к. (DMSO): 3612 (OH),

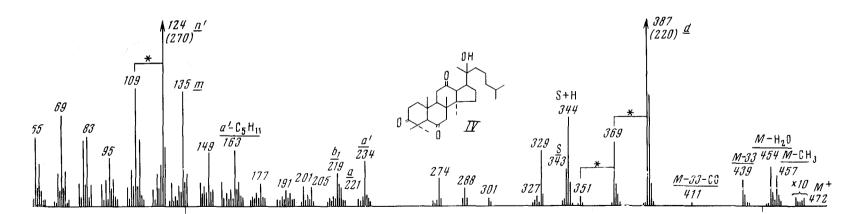


Рис. 2

3445 (водородная связь), 1700 (С=O), 1725 см⁻¹ (С=O); я.м.р. (СDCl₃) δ (м.д.): 0,83 (6H, J=6 гц), 0,88 (3H), 1,05 (3H), 1,08 (3H), 1,21, 1,44 (9H), 2,94 (1H—C₁₃, J=9.6 гц). В масс-спектре IV (рис. 2) обнаружен пик молекулярного пона М⁺472, М⁺—СH₃ (m/e 457), М⁺—H₂O (m/e 454), обусловленные потерей СH₃—21 и С₂₀—ОН. Масс-спектр IV характеристичен и сходен со спектром 20S-дигидропротопанаксатриона-3,6,12, любезно присланного нам проф. Шибата. Однако соотношение интенсивностей пиков понов М⁺—H₂O (С₂₀—ОН) и М⁺—СH₃ (С₂₁); n и d; S + H и S для обопх соединений различно, что может быть обусловлено конфигурацией при С₁₇. Сравнение IV с образцом 20S-дигидропротопанаксатриона-3,6,12 показало, что оба соединения имеют одинаковую величину R_f при топкослойной хроматографии на SiO₂ в системе бензол — этилацетат (3:1), но дают депрессию точки плавления смешанной пробы (т. пл. образца 20S-дигидропротопанаксатриона-3,6,12 (8) 153—157°; т. пл. смешанной пробы 145—155°).

Просапогенин II т. пл. 171.5—174.5° (EtOAc), $[\alpha]_{\rho^{20}} + 40.93$ (MeOH) при кислотном гидролизе отщеплял глюкозу. А ц е т а т II (V) т. пл. 206-210° (EtOH), [а]₂²⁰ + 21.1 (EtOAc), н.-к. (CCl₄): ОН отсутствует; я.м.р. (CDCl₃) δ (м.д.): 0,89 (3H), 0,91 (3H), 0,95 (3H), 0,97 (3H), 1,07 (3H), (3H), 1,60 (3H), 3,67 (1H-C₅'), 4,13 (3H-C₁', C₆'), $(7H-C_3, C_6, C_{24}, C_2', C_3', C_4')$, где C'- атомы глюкопиранозного кольца. При использовании интенсивного перемещивания ферментативное расшенление панаксозида А происходит в течение недели. Однако в этом случае кроме I и II были получены агликон VI т. пл. $128-132^{\circ}$ (MeOH), $[\alpha]_{D^{20}}+116,03$ (EtOAc), п.-к. (CH₂Cl₂): 3600 (OH), 3385 (H-связанный OH), 1708 см⁻¹ (C=O), я.м.р. (CDCl₃) δ (м.д.): 0.77 (3H), 0.992 (3H). 1.03 (3H), 1.19 (3H), 1.32 (3H), 1.65 (3H), 1.70 (3H), 3.55 (1H-C₁₂), 4,08 (1H—C₆), 5,21 (1H—C₂₄) и соответствующий ему просапогении (VII), $[α]_{\rho}^{20}$ + 105,16 (MeOH); αμετατ VII (VIII), $[α]_{\rho}^{20}$ + 127,3° (EtOAc), я.м.р. (CDCl₃) δ (м.д.): 0,77 (3H), 0,93 (3H), 1,04 (6H), 1,14 (3H), 1,23 (3H), 1,55 (3H), 1,60 (3H), 3,67 (1H-C₅'), 4,13 (3H-C₁', C₆'), 4,5-5,2 $(6H-C_6, C_{12}, C_{2}', C_{3}', C_{4}')$. Из я.м.р. спектра VI и VIII следует, что эти соединения образовались из I и II соответственно в результате окисления Зβ(OH) в присутствии ферментов пищеварительного сока улитки. Исследование стереохимии пролуктов ферментолиза продолжается.

Институт биологически активных веществ Дальневосточного паучного центра Владивосток Поступило 23 X 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Б. Еляков, Л. И. Стригина и др., Изв. АН СССР, ОХН, 1962, 2054. ² Г. Б. Еляков, Л. И. Стригина, Н. К. Кочетков, ДАН, 158, 892 (1964). ³ G. В. Еlуакоv, L. I. Strigina et al., Tetrahedron, 24, 5483 (1968). ⁴ А. К. Дзизенко, Ю. Н. Елькин и др., ДАН, 173, 1080 (1967). ⁵ Л. И. Стригипа, Г. Б. Еляков, А. К. Дзизенко, Химич. природн. соедин., 6, 352 (1968). ⁶ G. В. Еlуакоv, L. I. Strigina et al., Tetrahedron Letters, № 47, 3591 (1964). ⁷ Ю. Н. Елькин, А. К. Дзизенко, Г. Б. Еляков, Химич. природи. соедин., 3, 286 (1971). ⁸ Y. Nagai, О. Тапака, S. Shibata, Tetrahedron, 27, 881 (1971). ⁹ Y. Yostoka et al., Abstr. of VIII Intern. Symp. on the Chemistry of Natural Products, New Delhi, 1972, р. 171. ¹⁰ О. Тапака, Т. Тапака et al., Tetrahedron Letters, № 40, 4235 (1968). ¹¹ Л. И. Стригина. Тез. докл. У Всесоюзн. конфер. по химии и биохимии углеводов, «Наука», 1972, стр. 139.