УДК 517.512

MATEMATUKA

В. В. ЖУК, Г. И. НАТАНСОН

СВОЙСТВА ФУНКЦИЙ И РОСТ ПРОИЗВОДНЫХ ПРИБЛИЖАЮЩИХ ПОЛИНОМОВ

(Представлено академиком В. И. Смирновым 25 XII 1972)

Рассматривается задача: определить структурные свойства функции по известной скорости роста производных некоторых приближающих агрегатов этой функции. Первые результаты здесь получены Г. Харди и Дж. Литлвудом ((¹), см. также (²), стр. 419). В дальнейшем эта задача рассматривалась в статьях (³-6) (см. также (²), стр. 469). В настоящей работе установлены оценки модулей непрерывности различных порядков функции и ее производных через нормы производных полиномов наилучшего приближения, сумм Фейера и Пуассона.

Условимся об обозначениях. C — пространство вещественных непрерывных 2π -периодических функций f с нормой $||f|| = \max_x |f(x)|$. L_p , $1 \le p < \infty$, — пространство вещественных 2π -периодических функций, суммируемых с p-й степенью на $[0, 2\pi]$, с нормой $||f||_p = \left(\int\limits_0^x |f(x)|^p \, dx\right)^{1/p}$; $L_\infty = C$. $\beta = p$, если $1 \le p \le 2$, $\beta = 2$, если $2 , <math>\beta = 1$, если $p = \infty$.

$$\omega_r(f,\,\delta)_p = \sup_{|h| \leqslant \delta} \left\| \sum_{v=0}^r (-1)^v (v^r) f(x+vh) \right\|_p, \quad \omega_r(f,\,\delta) = \omega_r(f,\,\delta)_\infty.$$

 $T_n = T_n(f)$ — тригонометрический полином наилучшего приближения функции f порядка n в C. $E_n(f) = \|f - T_n\|$. $s_n(f) = \sum_{k=0}^n A_k(f)$ — n-я частная сумма тригонометрического ряда Фурье функции f.

$$\sigma_n(f) = (n+1)^{-1} \sum_{k=0}^n s_k(f), \quad P_p(f) = \sum_{k=0}^\infty \rho^k A_k(f).$$

N — множество натуральных чисел. Теорема 1. \varPi усть $f \in \tilde{C}; m+1, r, n \in N; \gamma \geqslant 2$. $Tor\partial a, ecau$

$$\sum_{k=1}^{\infty} k^{-r-1} \| T_k^{(r+m)}(f) \| < \infty,$$

то существует $f^{(m)} \subseteq \tilde{C}$ и

$$\omega_r(f^{(m)}, \gamma/n) \leq 2^{2m+2} \pi (4\gamma)^r \sum_{k=n+1}^{\infty} k^{-r-1} \| T_k^{(r+m)}(f) \|.$$

Доказательство. Подберем целое μ так, что $2^{\mu-1} < n \le 2^{\mu}$, и пусть $k_* \in N$ таково, что

$$k_{\nu}^{-r} \|T_{k_{\nu}}^{(r+m)}\| \leqslant k^{-r} \|T_{k}^{(r+m)}\|, \quad k, k_{\nu} \in [2^{\nu}+1, 2^{\nu+1}].$$

Предположим, что существует $f^{(m)} \subseteq C$. Тогда

$$\begin{split} & \omega_r(f^{(m)},\,\gamma/n) \! \leqslant \omega_r(f^{(m)} - T_{k\mu}^{(m)},\,\gamma/n) + \omega_r(T_{k\mu}^{(m)},\,\gamma/n) \! \leqslant \\ & \leqslant 2^r \| f^{(m)} - T_{k\mu}^{(m)} \| + (\gamma/n)^r \| T_{k\mu}^{(r+m)} \|. \end{split}$$

Так как

$$E_{h_{\nu}}(f) \leqslant E_{h_{\nu}}(f - T_{h_{\nu+1}}) + E_{h_{\nu}}(T_{h_{\nu+1}}) \leqslant E_{h_{\nu+1}}(f) + E_{h_{\nu}}(T_{h_{\nu+1}}),$$
 то с помощью теоремы Ахиезера — М. Крейна — Фавара ((²), стр. 590) найдем

$$E_{k_{\nu}}(f) - E_{k_{\nu+1}}(f) \le \pi 2^{-1} (k_{\nu} + 1)^{-r} ||T_{k_{\nu+1}}^{(r)}||$$

Значит.

$$E_{k_{\mu}}(f) \leqslant \pi 2^{-1} \sum_{\nu=\mu}^{\infty} (k_{\nu} + 1)^{-r} \| T_{k_{\nu+1}}^{(r)} \|.$$
 (1)

Пусть $m \ge 1$. Известно (см., например, (2), стр. 206), что $\|T_k^{(m)} - f^{(m)}\|_{\infty} = 0$. Следовательно,

$$f^{(m)} - T_{k_{\mu}}^{(m)} = \sum_{\nu=1}^{\infty} (T_{k_{\nu+1}}^{(m)} - T_{k_{\nu}}^{(m)}).$$

Применяя неравенство Бернштейна, получим

$$\| f^{(m)} - T_{k\mu}^{(m)} \| \leqslant \sum_{\mathbf{v} = \mu}^{\infty} k_{\mathbf{v}+1}^{m} \| T_{k_{\mathbf{v}+1}} - T_{k_{\mathbf{v}}} \| \leqslant 2 \sum_{\mathbf{v} = \mu}^{\infty} k_{\mathbf{v}+1}^{m} E_{k_{\mathbf{v}}}(f).$$

В силу неравенства (1)

$$\begin{split} \|f^{(m)} - T_{k_{||}}^{(m)}\| & \leqslant \pi \sum_{\mathbf{v} = ||1}^{\infty} k_{v+1}^{m} \sum_{i=v}^{\infty} (k_{i} + 1)^{-r-m} \|T_{k_{i+1}}^{(r+m)}\| = \\ & = \pi \sum_{i=||1}^{\infty} \left(\sum_{\mathbf{v} = ||1}^{i} k_{v+1}^{m}\right) (k_{i} + 1)^{-r-m} \|T_{k_{i+1}}^{(r+m)}\|. \end{split}$$

Но $\sum_{\nu=\mu}^{i} k_{\nu+1}^{m} \leqslant 2^{2m+1} (k_i+1)^m$. Поэтому

$$\|f^{(m)} - T_{k_{1}}^{(m)}\| \leqslant 2^{2^{m+1}}\pi \sum_{i=1}^{\infty} (k_{i} + 1)^{-r} \|T_{k_{i+1}}^{(r+m)}\|.$$

Последнее соотношение в силу (1) верно и при m=0. Имеем далее

$$\omega_{r}\left(f^{(m)}, \, \gamma/n\right) \leqslant 2^{r+2m+1} \pi \sum_{i=\mu}^{\infty} \left(k_{i}+1\right)^{-r} \|T_{k_{i+1}}^{(r+m)}\| + \gamma^{r} \left(k_{\mu}/n\right)^{r} k_{\mu}^{-r} \|T_{k_{\mu}}^{(r+m)}\|.$$

Ясно, что $k_{i+1}/(k_i+1) < 4$, $k_{\mu}/n < 4$. Значит,

$$\begin{split} & \omega_r(f^{(m)}, \, \gamma/n) \leqslant 2^{3r+2m+1} \pi \sum_{i=\mu}^{\infty} k_{i+1}^{-r} \| T_{k_{i+1}}^{(r+m)} \| + \\ & + (4\gamma)^r \, k_{\mu}^{-r} \| T_{k_{\mu}}^{(r+m)} \| \leqslant 2^{2m+1} \pi \, (4\gamma)^r \sum_{i=\mu}^{\infty} k_i^{-r} \| T_{k_{i}}^{(r+m)} \|. \end{split}$$

Легко видеть, что $k_i^{-r} \| T_{k_i}^{(r+m)} \| \leqslant 2 \sum_{k=2^i+1}^{2^{i+1}} k^{-r-1} \| T_k^{(r+m)} \|$. Таким образом,

$$\omega_r(f^{(m)}, \gamma/n) \leqslant 2^{2m+2} \pi (4\gamma)^r \sum_{k=n+1}^{\infty} k^{-r-1} \| T_k^{(r+m)} \|.$$

Осталось доказать, что при $m \geqslant 1$ существует $f^{(m)} \in C$. Из хода доказательства видно, что сходимость ряда $\sum_{k=1}^{\infty} k^{-r-1} \|T_k^{(r+m)}\|$ влечет сходимость

 $\sum_{i} E_{i}(f)$. Очевидно, что из сходимости последнего ряда следует схо-

тирость $\sum_{k=1}^{\infty} k^{m-1} E_k(f)$. По известной теореме Бернштейна отсюда вытекает существование и непрерывность $f^{(m)}$.

Замечание. При доказательстве мы не использовали специфики пространства C. Поэтому аналогичное утверждение (с той же константой) верно в пространствах L_p , $1 \le p < \infty$.

Tеорема 2. Пусть $f \in \mathcal{L}_p$, $1 , <math>r, n \in N$. Тогда

$$\omega_r(f, 1/n)_p \leq C(r, p) \left\{ \sum_{k=n+1}^{\infty} k^{-r\beta-1} \| \sigma_k^{(r)}(f) \|_p^{\beta} \right\}^{1/\beta}, \tag{2}$$

 $z\partial e\ C(r,p)$ зависит только от $r\ u\ p$.

Доказательство. Очевидно, что

$$\omega_r(f, 1/n)_p \leq 2^r \|f - s_n(f)\|_p + n^{-r} \|s_n^{(r)}(f)\|_p.$$
 (3)

Применяя теорему Литлвуда — Пэли ((7), стр. 335), получим

$$\|f-s_n(f)\|_p \leqslant C_1(p) \left\| \left\{ \sum_{\mathbf{u}=\mathbf{n}}^{\infty} \left(s_{2^{\mathbf{u}+1_n}}(f) - s_{2^{\mathbf{u}}n}(f) \right)^2 \right\}^{1/2} \right\|_p.$$

При 1 отсюда следует

$$||f - s_n(f)||_p \leqslant C_1(p) \left\{ \sum_{\mu=0}^{\infty} ||s_{2\mu+1_n}(f) - s_{2\mu_n}(f)||_p^p \right\}^{1/p}.$$

Если же p > 2, то

$$\|f - s_n(f)\|_p \leqslant C_1(p) \left\{ \sum_{\mu=0}^{\infty} \|s_{2\mu+1_n}(f) - s_{2\mu_n}(f)\|_p^2 \right\}^{1/s}.$$

Итак, при всех $p \in (1, \infty)$ будет

$$||f - s_n(f)||_p \leq C_1(p) \left\{ \sum_{|\mu|=0}^{\infty} ||s_{2\mu+1_n}(f) - s_{2\mu_n}(f)||_p^{\beta} \right\}^{1/\beta}.$$

В силу теорем М. Рисса ((2), стр. 423) и Д. Джексона имеем

$$\begin{split} &\| \, s_{2} \mu + 1_{n} \, (f) - s_{2} \mu_{n} \, (f) \, \|_{p} = \| \, s_{2} \mu + 1_{n} \, (f) - s_{2} \mu_{n} \, [\, s_{2} \mu + 1_{n} \, (f)] \, \|_{p} \leqslant \\ & \leqslant C_{2} \, (p) \, E_{2} \mu_{n} \, [\, s_{2} \mu + 1_{n} \, (f)]_{p} \leqslant C_{3} \, (p) \, (2^{\mu} n)^{-r} \, \| \, s_{2}^{(r)} \mu + 1_{n} \, (f) \|_{p}. \end{split}$$

Значит,

$$\|f-s_n\left(f\right)\|_p\leqslant C_4\left(p\right)\left\{\sum_{\mu=0}^{\infty}\left(2^{\mu}n\right)^{-r\beta}\|s_{2^{\mu+1}n}^{\left(r\right)}\left(f\right)\|_p^{\beta}\right\}^{1/\beta}.$$

 Π ри $k \geqslant 2$ $^{\mu}n$ будет

$$\|s_{2^{\perp}n}^{(r)}(f)\|_{p} = \|s_{2^{\perp}n}[s_{k}^{(r)}(f)]\|_{p} \leqslant C_{5}(p)\|s_{k}^{(r)}(f)\|_{p}.$$

Следовательно,

$$\| s_{2^{\mu}_{n}}^{(r)}(f) \|_{p} \leq C_{6}(p) (2^{\mu}n)^{-1} \sum_{k=2^{\mu}+1}^{2^{\mu}+1_{n}} \| s_{k}^{(r)}(f) \|_{p}^{\beta}.$$

$$(4)$$

Отсюда

$$||f - s_n(f)||_p \leqslant C_7(p) \left\{ \sum_{\mu=0}^{\infty} (2^{\mu}n)^{-r\beta-1} \sum_{k=2^{\mu+1}n+1}^{2^{\mu+2}n} ||s_k^{(r)}(f)||_p^{\beta} \right\}^{1/\beta} \leqslant$$

$$\leqslant C_8(p) 2^{2r} \left\{ \sum_{k=2n+1}^{\infty} k^{-r\beta-1} ||s_k^{(r)}(f)||_p^{\beta} \right\}^{1/\beta}. \tag{5}$$

Сопоставляя формулы (3), (4) при $\mu = 0$ и (5), получаем

$$\omega_r(f, 1/n)_p \leq C_9(p) 2^{2r} \left\{ \sum_{k=n+1}^{\infty} k^{-r\beta-1} \| s_k^{(r)}(f) \|_p^{\beta} \right\}^{1/\beta}.$$
 (6)

Положим $\lambda_v = (2n+1) / (2n+1-v)$ при $0 \le v \le n$, $\lambda_v = 0$ при v > n.

Ясно, что
$$|\lambda_{\mathbf{v}}| \leq 3$$
 и $\sum_{k=1}^{\infty} |\lambda_{\mathbf{v}} - \lambda_{\mathbf{v}+1}| \leq 3$.

Отсюда на основании теоремы И. Марцинкевича ((7), стр. 346) получаем

$$||s_n(f)||_p = \left\| \sum_{n=0}^{\infty} \lambda_n A_n \left[\sigma_{2n}(f) \right] \right\|_p \leqslant C_{10}(p) ||\sigma_{2n}(f)||_p.$$
 (7)

Из формул (6), (7) вытекает требуемое. Замечание. В. В. Жуком было показано, что неравенство (2) справедливо при p=1 и $p=\infty$. Сходным методом доказывается

Теорема 3. Пусть $f \in \mathcal{L}_p$, $1 \le p \le \infty$, $r \in \mathbb{N}$, $\delta \in (0,1]$. Тогда

$$\omega_r(f,\delta)_p \leqslant C(r,p) \left\{ \int_{1-\delta}^{1} (1-\rho)^{r\beta-1} \|P_{\rho}^{(r)}(f)\|_p^{\beta} d\rho \right\}^{1/\beta},$$

 $r\partial e\ C(r,p)$ зависит только от $r\ u\ p$.

Замечания. 1) В. В. Жук установил обратное неравенство

$$\|P_{\rho}^{(r)}(f)\|_{p} \leq C(r)(1-\rho)_{J}^{-r}\omega_{r}(f,1-\rho)_{p},$$

где $1 \leqslant p \leqslant \infty, r \in N, C(r)$ зависит только от $r, \rho \in [0,1), f \in \mathcal{L}_p$.

2) Случай r=1 рассматривался также в (3).

3) Теорема 3 может быть получена также и путем сопоставления приведенных выше результатов и установленного Г. И. Натансоном неравен-

$$\|\sigma_{n-1}(f)\|_p \leq (1+e)\|P_{1-n^{-1}}(f)\|_p$$

Ленинградский государственный университет им. А. А. Жданова

Поступило 19 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ G. H. Hardy, I. E. Littlewood, Math. Zs., 34, 403 (1931—1932). ² А. Зигмунд, Тригонометрические ряды, 1, М., 1965. ³ Ю. А. Брудный, И. Е. Гопенгауз, Матем. сборн., 52, 891 (1960). ⁴ P. L. Butzer, S. Pawelke, Acta sci. math., 28, 173 (1967). ⁵ G. Sunouchi. Jahresber. Dtsch., 70, 165 (1968). ⁶ P. L. Butzer, K. Scherer, Aequat. math., 3, 170 (1969). ⁷ А. Зигмунд, Тригонометрические ряды, 2, М., 1965.