УЛК 539.189

ФИЗИЧЕСКАЯ ХИМИЯ

А. Б. ДОКТОРОВ, К. М. САЛИХОВ, Ю. Н. МОЛИН

ОБМЕННАЯ КОНВЕРСИЯ ПОЗИТРОНИЯ В РАЗБАВЛЕННЫХ РАСТВОРАХ ПАРАМАГНИТНЫХ КОМПЛЕКСОВ

(Представлено академиком В. Н. Кондратьевым 15 Х 1971)

Экспериментально установлено (1), что тушение позитрония (Ps) парамагнитными комплексами переходных металлов обусловлено в основном двумя пропессами — реакцией окисления Ps и его *орто- пара-*конверсией. Наибольшие константы скорости o- n-конверсии $(2 \div 4 \cdot 10^9 \text{ л/моль} \cdot \text{сек})$ наблюдаются для галоидсодержащих и аквакомплексов (табл. 1), что было объяснено в (2) доступностью при соударении с Ps атомов галондов и кискомплексов, несущих большую этих спиновую (~1—10%). В работе (2) показано, что уменьшение спиновой плотности на периферии комплекса (табл. 1, комплексы Со²⁺ со спиртами) приводит к уменьшению константы о- n-конверсии Ps. Можно подагать, что константы $2 \div 4 \cdot 10^9$ л/моль сек являются предельными для процесса o- n-конверсии Ps парамагнитными комплексами, поскольку увеличение спиновой плотности при переходе от кислорода к хлору, а также изменение природы пентрального иона практически не влияет на величину константы конверсии Ps. Отметим, что эти предельные константы примерно на порядок меньше диффузионной константы, которая, как полагают (1), достигается в наиболее быстрых реакциях окисления Рѕ (см. табл. 1).

В настоящей работе рассмотрен теоретически обменный механизм о- n-конверсии Ps. Получены формулы, связывающие эффективность о-n-конверсии Ps при столкновении с комплексом с величиной обменного интеграла, временем электронной релаксации парамагнитного иона и его

Таблица 1
Константы тушения позитрония парамагнитными комплексами переходных металлов

Тушитель	Ра с тво ритель	Комплекс	К•10-9, л/моль•сек	Механизм тушения	Источ- ник
Co (ClO ₄) ₂	Вода	Co (H ₂ O) ₆ ²⁺	2 ,40+0,35	Конверсия	(2)
(Метанол	$Co(ClO_4)_m(ROH)_n$	0,3+0,12	»	(2)
	Этанол	То же	0,2+0,18	»	(2)
	Пропанол	» »	0,16 + 0,14	»	(²)
	третБутанол	» »	$0,3\pm0,4$	»	(2)
$CoCl_2$	Пропанол	CoCl ₂ (ROH) ₂	2,8+0,3	»	(2)
	третБутанол	То же	$1,7\pm0,5$	»	(2)
	Вода	$Co (H_2O)_6^{2+}$	2,2	»	(1)
FeSO ₄	Вода	$Fe (H_2O)_{\bf 6}^{2+}$	2,1	»	(1)
NiSO ₄	»	Ni $(H_2O)_6^{2+}$	1,7	»	(1)
$MnCl_2$	»	Mn $(H_2O)_{6}^{2+}$	1,7	»	(1)
$FeCl_3$	»	$Fe (H_2O)_{\bf 6}^{3+}$	13	Окисление	(1)
$CuCl_2$	*	Cu (H ₂ O) ₆ ²⁺	5,4	»	(1)

спином. Из теории следует, что в невязких жидкостях предельные константы коверсии Ps в 4—8 раз меньше диффузионных констант бинарных соударений.

Скорость o- n-конверсии Ps рассчитывается в рамках следующей модели: со средней частотой Z Ps попадает в «клетку» с парамагнитным комплексом (сталкивается с комплексом), время жизни Ps в «клетке» τ_c (причем $Z\tau_c \ll 1$). Учитывая сильную зависимость обменного взаимодействия от расстояния между Ps и ионом, принимается приближение внезапного включения взаимодействия: вне «клетки» Ps и ион не взаимодействуют, в «клетке» взаимодействие Ps и иона описывается спин-гамильтонианом (в единицах $\hbar = 1$)

$$\hat{V} = \hat{J}\hat{S}I,\tag{1}$$

где \hat{S} и \hat{I} — операторы спина электрона Ps и электронов комплекса соответственно. Магнитное контактное взаимодействие электронов комплекса с позитроном пренебрежимо мало по сравнению с обменным взаимодействием (1) и поэтому не рассматривается. Чтобы приближение внезапного включения взаимодействия было применимо, время включения взаимодействия \bar{t} должно быть достаточно мало, $\bar{t}\Delta < 1$, где Δ — энергия синглет-триплетного расщенления в Ps. Это условие выполняется, так как $\Delta = 10^{12}~{\rm cek}^{-1}$, а для \bar{t} в жидкостях можно ожидать $\bar{t} \sim 10^{-13} - 10^{-14}~{\rm cek}$.

Рассмотрим сначала случай малых времен столкновения τ_c , так что $\tau_c \ll \tau_s$, T_i . Здесь τ_s время жизни *пара*-Ps, $\tau_s \sim 10^{-10}$ сек, T_i — время спинрешеточной релаксации комплекса. При этом за время столкновения можно пренебречь релаксацией комплекса и аннигиляцией n-Ps. Вероятность конверсии Ps определяется \hat{s} -матрицей столкновения

$$\hat{S} = \exp(i\hat{H}_0 t_c) \exp(-i\hat{H} t_c), \tag{2}$$

где $\hat{H} = \hat{H_0} + \hat{V}$, $\hat{H_0}$ — гамильтониан Ps и иона без учета взаимодействия между ними. Обозначим собственные состояния Ps через $|T_+\rangle$, $|T_0\rangle$ и $|T_-\rangle$ (триплет) и $|S\rangle$ (синглет), собственные состояния иона через $|m\rangle$.

Для вероятности конверсии P_s при столкновении продолжительностью t_c с комплексом с проекцией спина m перед столкновением получаются следующие выражения:

ощие выражения:
$$Pm(T_{\pm} \to s) = |\langle T_{\pm}, m \mp 1 | \hat{S} | s, m \rangle|^2 = (I \pm m) (I \mp m + 1) \varkappa(t_c),$$

$$Pm(T_0 \to s) = |\langle T_0, m | \hat{S} | s, m \rangle|^2 = 2m^2 \varkappa(t_c),$$
(3)

где

$$\kappa(t_c) = 2^{-1}J^2R^{-2}\sin^2\left(\frac{R}{2}t_c\right), \quad R^2 = \left(\Delta + \frac{J}{2}\right)^2 + J^2I(I+1).$$

Заметим, что конверсия из состояния $|T_0\rangle$ обусловлена секулярной частью обменного взаимодействия (1) и при этом проекция спина комплекса не изменяется, а конверсия из состояний $|T_+\rangle$ и $|T_-\rangle$ происходит с изменением проекции спина иона на 1.

Усредняя (3) по всем состояниям $|m\rangle$ с одинаковым весом $\frac{1}{2I+1}$ и усредняя по продолжительностям столкновения t_c , получаем

$$P(T_{+} \rightarrow s) = P(T_{-} \rightarrow s) = P(T_{0} \rightarrow s) = \frac{2I(I+1)}{3\tau_{c}} \int_{0}^{\infty} \varkappa(t_{c}) \exp\left(-\frac{t_{c}}{\tau_{c}}\right) dt_{c}.$$

$$(4)$$

Отсюда следует, что константа о- n-конверсии Ps может быть представлена в виде

 $K = Z\overline{P},\tag{5}$

тде эффективность столкновения \overline{P} находится из (4) и равна

$$\bar{P} = \frac{1}{6} \frac{W}{W + \tau_c^{-1}}, \quad W = \frac{J^{2I}(I+1)\tau_c}{1 + (\Delta + J/2)^2 \tau_c^2}.$$
 (6)

В результате коррелированного движения спинов Ps и иона предельное значение \bar{P} равно $(^1/_6)I(I+1)$ / $(I+^1/_2)^2$ при $J\tau_c\gg 1$. Исходя из статистических весов триплетного и синглетного состояния, можно было ожидать, что предельное значение \bar{P} при $J\tau_c\gg 1$ равно $^1/_4$ (см. $(^3)$).

Эффективность конверсии при произвольном соотношении между τ_c и τ_s можно найти следующим образом: усредненная по всем состояниям иона $|m\rangle$ вероятность того, что Ps будет находиться в триплетном состоянии к моменту t равна $w(t) = 1 - \frac{2}{3}I(I+1)\varkappa(t)$. Пусть вероятность аннигиляции n-Ps в интервале (t, t+dt) равна $\frac{dt}{\tau_s} \exp\left(-\frac{t}{\tau_s}\right)$. Вероятность найти Ps в o-состоянии к моменту времени t_c , если в моменты t_1, \ldots, t_h произошла аннигиляция n-Ps, равна $w_h(t_1, \ldots, t_h, t_c)dt_1 \ldots dt_h = w(t_1)w(t_2-t_1)\ldots w(t_c-t_h)\exp(-t_c/\tau_s)(dt_1\ldots dt_h)/\tau_s^h$. Усредняя по всем возможным реализациям процесса, получаем среднюю вероятность остаться Ps в o-состоянии

$$\overline{w} = \sum_{k=0}^{\infty} \frac{1}{\tau_c} \int_0^{\infty} \exp\left(-\frac{t_c}{\tau_c}\right) dt_c \int_0^{t_c} dt_k \dots \int_0^{t_c} dt_1 w_k(t_1, \dots, t_k, t_c). \tag{7}$$

Отсюда средняя эффективность конверсии Рѕ при столкновении равна

$$\bar{P} = 1 - \bar{w} = \frac{W_s}{\tau_c^{-1} + W_s (1 + 5\tau\tau_c^{-1})},$$
 (8)

где

При $J^2 \tau_s \tau_c \gg 1$, $\tau_s < \tau_c \ \overline{P} = 1$, т. е. $o ext{-Ps}$ полностью переходит в $n ext{-состояние}$ и аннигилирует за время столкновения. При $\tau_c < \tau_s$ (8) переходит в (6).

Существенным ограничением приведенных выше расчетов является требование малости времени нахождения Ps в «клетке» по сравнению с временем спин-решеточной релаксации T_1 парамагнитного комплекса. Такие конверторы Ps, как Co(II), Fe(II), Ni(II) имеют достаточно короткие $T_1 \sim 10^{-11} - 10^{-13}$ сек. В этом случае необходимо учитывать случайную модуляцию обменного взаимодействия процессом спин-решеточной релаксации спина комплекса. Это легко сделать при условии $IT_1 < 1$, когда применима стохастическая теория возмущений (4) и можно записать кинетические уравнения для населенностей o- и n-состояний Ps во время столкновения (считается также, что $T_1 \ll \tau_s$):

$$\dot{\rho}_T = -W_1 \rho_T + 3W_1 \rho_s, \quad \dot{\rho}_s = -3W_1 \rho_s + W_1 \rho_T - \frac{1}{\tau_s} \rho_s,$$

где

$$W_{1} = \frac{J^{2}I(I+1)}{6} \int_{0}^{\infty} \cos(\Delta t) \exp\left(-\frac{t}{T_{1}}\right) dt$$
 (9)

и при t = 0, $\rho_T = 1$, $\rho_s = 0$.

Эффективность конверсии в этом случае равна

$$\bar{P} = 1 - \int_{0}^{\infty} \rho_{T}(t_{c}) \exp\left(-\frac{t_{c}}{\tau_{c}}\right) dt_{c} = \frac{W_{1}}{\tau_{c}^{-1} + W_{1}(1 + 3\tau\tau_{c}^{-1})}, \quad (10)$$

где $W_1={}^4/{}_6J^2I(I+1)-1$ / $(1+\Delta^2T_1{}^2)$. При $\tau_c\ll \tau_s$ ее предельное значение при $J^2T_1\tau_c>1$ равно ${}^4/{}_4$. Если же $\tau_c\ll \tau_s$, то $\bar p\to 1$.

В случае $JT_1>1,\ T_1< au_c$ следует ожидать, что $P={}^1/_4$ при $au_c< au_s$ и P=1 при $au_c> au_s$.

Сравнение полученных выражений для эффективностей конверсии Ps при столкновении в различных ситуациях с соответствующими выражениями для эффективностей столкновений, обусловливающих обменное уширение линий э.п.р. стабильных свободных радикалов при взаимодействии с комплексами (5), показывает, что их зависимость от параметров I, τ_c , T_1 , I анлогична. Это находится в хорошем согласии с экспериментально наблюдаемым фактом (3) сходного поведения константы конверсии Ps и константы обменного уширения при изменении комплексов.

Теория предсказывает, что спин-решеточная релаксация нова может существенно понизить эффективность конверсии Ps комплексами переходных металлов. Таких данных пока нет.

Для невязких жидкостей $\tau_c < \tau_s$. Важным результатом теории является то, что при этом эффективность конверсии всегда меньше 1, $^1/_8 \le P \le ^1/_4$. Это является следствием статистических весов синглетного и триплетного состояний (фактор $^1/_4$) и результатом коррелированного движения спинов Ps и иона при столкновении (эффект отдачи). Экспериментальные результаты, приведенные в табл. 1, и результаты проведенных здесь расчетов показывают, что в невязких жидкостях предельные константы конверсии Ps парамагнитными комплексами переходных металлов примерно на порядок меньше диффузионных констант двойных соударений.

Авторы благодарны В. П. Шантаровичу за полезные замечания.

Институт химической кинетики и горения Сибирского отделения Академии наук СССР Новосибирск Поступило 11 X 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Гольданский, Физическая химия позитрона и позитрония, «Наука», 1968. ² В. И. Гольданский, Р. И. Зусман и др., ДАН, 188, 1079 (1969). ³ Ю. Н. Молин, Диссертация, Новосибирск, 1970. ⁴ А. Абрагам, Ядерный магнетизм, ИЛ, 1963. ⁵ К. М. Salikhov, А. В. Doctorov et al., J. Magn. Res., 5, № 2 (1971).