УДК 541.49

ФИЗИЧЕСКАЯ ХИМИЯ

Академик Б. А. ДОЛГОПЛОСК, Е. И. ТИНЯКОВА. В. А. ЯКОВЛЕВ, О. Н. ЯКОВЛЕВА

НЕКОТОРЫЕ РЕАКЦИИ π-АЛЛИЛЬНЫХ КОМПЛЕКСОВ НИКЕЛЯ, СОДЕРЖАЩИХ РАЗЛИЧНЫЕ АНИОНЫ

Известно, что п-аллилникельгалогениды в углеводородных растворах при обычных температурах устойчивы длительное время (1). Под влиянием электронодонорных соединений, таких как диметилформамид, N-метилнирролидон, гексаметилфосфортриамид, тетрагидрофуран и др., они диспропорционируют с образованием бис-п-аллилникеля и галогенида никеля (2, 3)

$$(\pi\text{-}C_3H_5\text{NiX})_2$$
 $\xrightarrow{\text{pohop}}$ $(\pi\text{-}C_3H_5)_2\text{Ni} + \text{NiX}_2$.

В присутствии воды (3) реакция протекает по уравнению

$$(\pi-C_3H_5NiX)_2 \stackrel{\text{вода}}{\longleftarrow} (\pi-C_3H_5)_2Ni + \pi-C_3H_5NiX \cdot NiX_2.$$

При отгонке бис-л-аллилникеля равновесие смещается вправо и реакция гладко протекает по указанному уравнению с количественным выходом

продуктов. В работе (4) была изучена реакция л-аллилникельбромида (хлорида) с электроноакцепторными соединениями (А). В начальной стадии комплексообразования не наблюдается выпадения осадка. При введении в такой раствор воды или тетрагидрофурана происходит количественное отщепление аллильных групп в виде диаллила. Выход последнего снижается, если вода добавляется к уже выпавшему в осадок комплексу.

В настоящем сообщении приводятся данные, характеризующие устойчивость л-аллильных комплексов никеля, содержащих вместо галоида остаток толуолсульфо-

Таблица 1 Выход пропилена при взаимодействии бис- π -аллилникеля с различными кислотами. $[(C_3H_5)_2Ni] = 0,05$ мол/л, 20°

Кислота НХ	NiR ₂ /HX (мольн.)	Взято (С _в Н _ь) ₂ Ni, ммол.	Выход пропиле- на, ммол.
CH ₃ C ₆ H ₄ SO ₃ H	1:1 1:1 1:2	$0,16 \\ 0,22 \\ 0,35$	$0,17 \\ 0,23 \\ 0,71$
CF3COOH	$ \begin{array}{c} 1:1 \\ 1:1 \\ 1:2 \end{array} $	$0,20 \\ 0,20 \\ 0,20$	$0,21 \\ 0,21 \\ 0,41$
CCl₃COOH	1:1 1:1 1:1 1:2	$\begin{array}{c} 0,25 \\ 0,29 \\ 0,65 \\ 0,60 \end{array}$	$\begin{bmatrix} 0,24\\ 0,30\\ 0,67\\ 0,61 \end{bmatrix}$

кислоты, трихлор- или трифторуксусной кислот, и влияние на них электронодонорных соединений. Указанные п-аллильные комплексы получали взаимодействием бис-л-аллилникеля с соответствующими кислотами в углеводородном растворе (реакция (1))

$$(C_3H_5)_2\mathrm{Ni} \xrightarrow[(1)]{\mathrm{HX}} C_3H_6 + C_3H_5\mathrm{NiX} \xrightarrow[(2)]{\mathrm{HX}} C_3H_6 + \mathrm{NiX}_2.$$

Реакция (1) протекает быстро и количественно. На 1 моль введенной кислоты выделяется 1 моль пропилена (см. табл. 1). Введение второй молекулы кислоты (реакция (2)) в случае п-аллилникельтолуолсульфоната и п-аллилникельтрифторацетата также приводит к выделению пропилена, хотя в последнем случае реакция протекает очень медленно. В случае

 $\begin{tabular}{ll} T аблица & 2 \\ B ыход (π-C_3H_5$)_2$Ni ([π-C_3H_5$NiX] = 0,02 мол/л, 20°) \\ \end{tabular}$

	Взято	Продол- жит. вы-	Найдено (π-С₃Н₅)₂Ni в отгоне	
π-C ₃ H ₅ NiX	π-C ₃ H ₅ NiX, ммол	держки, ча с	ммол.	% от теории
π-C ₃ H ₅ NiOSO ₂ C ₆ H ₄ CH ₃	0,144 0,217 0,184 0,187 0,187	17 19 $0,25$ 2 5	0,072 0,107 0,0415 0,0404 0,0402	100 99 45 43,2 43
π-C ₃ H ₅ NiOCOCF ₃	0,187	1-й отгон 2-й » 3-й » Итого	0,042 0,012 0,003 0,057	45 12,8 3,2 61,0
π -C ₃ H ₅ NiOCOCF ₃ + H ₂ O π -C ₃ H ₅ NiOCOCCl ₃	0,184 0,20 0,20	$0,3 \\ 0,25 \\ 24$	0,085 0 0	92,5

п-аллилникельтрихлорацетата реакция (2) протекает без выделения пропилена; хроматографически установлено образование диаллила и продуктов его изомеризации (гексадиена-2,4).

В растворе толуола п-аллилникельтолуолсульфонат и п-аллилникельтрифторацетат, в отличие от п-аллилникельгалогенидов, неустойчивы при комнатной температуре. В этих условиях протекает реакция диспропорционирования (симметризации)

$$2C_3H_5NiX \Rightarrow (C_3H_5)_2Ni + NiX_2$$
.

При отгонке бис- π -аллилникеля равновесие смещается вправо и в случае π -аллилникельтолуолсульфоната удается количественно выделить продукты реакции (табл. 2). В случае π -аллилникельтрифторацетата это равновесие, по-видимому, устанавливается медленно, вследствие чего выход бис- π -аллилникеля постепенно возрастает, если к осадку добавлять свежие порции растворителя с последующей его отгонкой. При этом вместе с растворителем отгоняется и бис- π -аллилникель (табл. 2). При двух-трехкратной смене растворителя суммарный выход бис- π -аллилникеля достигал только 61% от теории. Не исключена возможность, что образующийся трифторацетат никеля связывает исходный π -аллилникельтрифторацетат в комплекс: π -C₂H₅NiOCOCF₃·Ni(OCOCF₃)₂, подобно тому, как это было установлено для π -аллилникельхлорида (3). В этом случае реакция описывается уравнением

3π -C₃H₅NiOCOCF₃ \rightleftharpoons $(\pi$ -C₃H₅)₂Ni $+\pi$ -C₃H₅NiOCOCF₃·Ni(OCOCF₃)₂

и теоретический выход бис- π -аллилникеля равен 66%. При введении воды выход бис- π -аллилникеля близок к количественному, что указывает на нестабильность образующегося комплекса. Диспропорционирование π -аллилникельгалогенидов, как уже указывалось, протекает только в присутствии воды, тетрагидрофурана и некоторых других электронодонорных соединений. В случае π -аллильных соединений никеля со связью Ni — OY (Y = COCF₃, SO₂Ar) подобная реакция протекает самопроизвольно. Реакция диспропорционирования π -аллилникельтрихлорацетата с образованием бис- π -аллилникеля не протекает ни при хранении в углеводородном растворе, ни в присутствии воды или тетрагидрофурана. При введении их в раствор свежеприготовленного π -C₃H₅NiOCOCCl₃ происходит почти количественное отщепление аллильных групп в виде диаллила (табл. 3). Специальными опытами было показано, что в отсутствие

Разрушение п-аллилникельтрихлорадетата под влиянием электронодонорных соединений. [п-C₃H₅NiOCOCCl₃] = 0,075 мол/л, 20°

Разрушающий агент (Д)	Продолжит. выдержки π-C ₃ H ₃ NiOCOCCl ₃ до введения Д, мин.	Найдено С _з Н ₅ —СзН ₅ , % от теории	С1-/ N i ²⁺ в растворе
Тетрагидрофуран Тетрагидрофу- ран — ДФПГ *	5 5	$93,5 \\ 43,5$	
H ₂ O	5 20 60 420	89 80 6 3 13	$^{1,00}_{0,92}_{0,93}_{0,97}$

^{*} ДФПГ — дифенилникрилгидразил, =1:1 (мол/мол).

ДФПГ/ π -C₃H₅NiOCOCCl₃ =

электронодонорных соединений диаллил в системе не образуется. Диаллил, по-видимому, является продуктом рекомбинации аллильных радикалов, возникающих при гомолитическом разрыве связи С — Ni. Подобное гомолитическое расщепление связи С — металл под влиянием электронодонорных соединений установлено в работе (5) применительно к титан- и ванадийорганическим соединениям. Из табл. З видно, что в присутствии дифенилпикрилгидразила (ДФПГ/Ni = 1:1 мол) выход диаллила резко понижается. Методом э.п.р. показано, что ДФПГ расходуется полностью. Разложение π -C₃H₅NiOCOCCl₃ под влиянием воды инициирует радикальную полимеризацию смеси стирола с метилметакрилатом. В случае эквимолекулярной смеси мономеров при малой глубине полимеризации полимер содержит 56% стирольных и 44% метилметакрилатных звеньев. Приведенные данные можно рассматривать как довод в пользу образования диаллила через стадию аллильных радикалов.

Таким образом, п-аллилникельтрихлорацетат в зависимости от условий проведения процесса может инициировать полимеризацию по координационно-ионному механизму (стереоспецифическая полимеризация диенов) или радикальному механизму.

На выход диаллила в присутствии доноров существенное влияние оказывает время выдерживания π-С₃H₅NiOCOCCl₃ до введения воды (тетрагидрофурана) (см. табл. 3). По мере увеличения времени выдерживания (от 5 до 120 мин.) выход диаллила падает до 13%. Уменьшение выхода диаллила во времени указывает на нестабильность π-аллилникельтрихлорацетата и образование продуктов, в состав которых входит аллильная группа. При хранении π-аллилникельтрихлорацетата в толуольном растворе наблюдается постепенное выпаление осадка.

При разрушении π -аллиникельтрихлорацетата водой в водный раствор переходит весь никель. В продуктах разрушения появляется ионный хлор, определяемый по Фольгарду. Независимо от времени предварительного выдерживания π -C₃H₅NiOCOCCl₃ до введения воды, соотношение Cl⁻/Ni²⁺ в водном растворе близко к единице. Появление в продуктах разложения ионного хлора указывает на то, что реакция протекает с отрывом хлора от трихлорацетатного остатка атомом никеля.

Институт нефтехимического синтеза им. А. В. Топчиева Академии наук СССР Поступило 21 II 1972

Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Э. Фишер, Г. Вернер, л-Комплексы металлов, М., 1968, стр. 224. ² Е. І. Согеу, L. S. Недедия, М. F. Sammelhack, J. Am. Chem. Soc., 90, 2417 (1968). ³ А. В. Волков, О. П. Паренаго и др., ДАН, 183, 1083 (1968). ⁴ А. В. Волков, О. П. Паренаго и др., ДАН, 187, 574 (1968). ⁵ Ф. С. Дьячковский, Докторская диссертация, ИХФ АН СССР, 1970.