УДК 541.124.7

ФИЗИЧЕСКАЯ ХИМИЯ

3. С. КАРТАШЕВА, А. Б. ГАГАРИНА, академик Н. М. ЭМАНУЭЛЬ

КИНЕТИКА РАСПАДА ДИЦИКЛОГЕКСИЛПЕРОКСИДИКАРБОНАТА В БЕНЗОЛЕ

Многие важные для практики химические процессы (например, окисление, полимеризация) протекают по свободнорадикальному, в частности цепному, механизму. Поэтому изучение механизма стимулирования (инициирования) таких процессов составляет одну из главных задач экспериментальной химической кинетики. Перекисные органические соединения являются едва ли не самыми распространенными инициаторами свободнорадикальных процессов. В связи с этим представляется существенным рассмотреть в современном кинетическом аспекте особенности перекисного

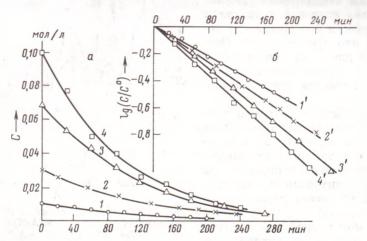
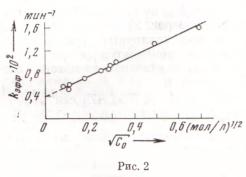


Рис. 1. Кинетические кривые расходования ПК в бензоле (a) и полулогарифмические анаморфозы (b), 55°

инициирования, которые обнаруживаются при детальном изучении механизма их действия.

Перэфиры угольной кислоты — пероксидикарбонаты относятся к числу высокоактивных перекисных соединений, легко распадающихся на радикалы:

Первоначально перкарбонаты исследовались с точки зрения возможности получения при их распаде активных алкоксирадикалов ($^{1-3}$). Однако в ряде случаев, например при полимеризации виниловых мономеров, было установлено, что реакцию инициируют карбоксирадикалы ROC(O)O, а участие RO-радикалов незначительно (4).


Скорость образования свободных радикалов при распаде инициатора I равна $w_i = \beta k_{\rm m}[I]$, где β — число радикалов, выходящих в объем растворителя в расчете на одну распавшуюся молекулу вещества (эффективность инициирования), $k_{\rm m}$ — константа скорости распада. Следовательно, величины $k_{\rm m}$ и β являются основными характеристиками инициатора.

Величина $k_{\rm M}$ для дициклогексилпероксидикарбоната (ПК) ранее была измерена в среде различных углеводородов (4 , 5 , 6); что касается величины β , то для нее получены противоречивые данные (5 , 7). При распаде ПК, наряду с разрывом перекисной связи, в некоторых растворителях был обнаружен также индуцированный распад этого соединения (3 , 6). Исследованию различных направлений распада ПК и определению кинетических характеристик мономолекулярного и цепного процесса, а также изме-

нениям их с температурой и посвя-

щена настоящая работа.

Термическое разложение ПК в бензоле в отсутствие кислорода изу-

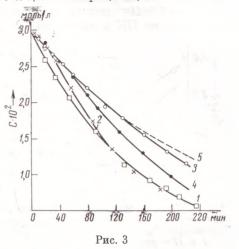


Рис. 2. Зависимость $k_{\theta \Phi \Phi}$ от начальной концентрации ПК, 55°

Рис. 3. Кинетические кривые расходования ПК $(3\cdot 10^{-2}\ \text{мол/л})$ в бензоле в отсутствие (1) и при добавках ингибиторов (мол/л) – ионола: $2-2\cdot 10^{-3}$ и $3-10^{-2}$, и ФН: $4-10^{-2}$; 5 — расчетная кривая мономолекулярного распада при $k_{\rm M}=3.8\cdot 10^{-3}\ \text{мин}^{-1}$

чалось при концентрациях $3 \cdot 10^{-3} - 5 \cdot 10^{-1}$ мол/л и температурах $35 - 60^\circ$. Опыты проводились в запаянных ампулах. Для удаления кислорода была использована общепринятая методика многократного замораживания и вакуумирования. Концентрация ПК определялась иодометрическим методом. ПК очищался четырехкратной перекристаллизацией из ацетона в смесь метанол — вода (5:1). Бензол х.ч. перегонялся над металлическим натрием. Использовавшиеся в работе ингибиторы 2,6-дитретбутил-4-метилфенол (ионол) и 2-фенилиндандион-1,3 ($^{\circ}$) очищались соответственно возгонкой в вакууме и перекристаллизацией из бензола.

На рис. 1 a приведены кинетические кривые распада ПК при различных начальных концентрациях и их полулогарифмические анаморфозы (рис. 1 b). Характерная для реакций первого порядка линейная зависимость в координатах $\log C/C_0$, t наблюдается вплоть до глубоких стадий превращения. Однако, в отличие от истинных мономолекулярных реакций, константа скорости растет с увеличением начальной концентрации. На рис. 2 приведена зависимость константы скорости k_{b} от начальной концентрации пероксидикарбоната C_0 , из которой следует, что k_{b} может быть представлена следующим выражением:

$$k_{a\phi\phi} = k_{\rm M} + a \overline{VC_0},\tag{1}$$

где $k_{\rm M}$ — константа скорости мономолекулярного распада, a — кинетический параметр, характеризующий скорость цепного процесса.

Эффект увеличения константы скорости с ростом начальной концентрации при распаде различных перекисных соединений наблюдался также в работах (9-11), являясь следствием индуцированного цепного распада, происходящего при участии свободных радикалов.

Доказательством существования цепных стадий при термическом разложении ПК в бензоле является уменьшение суммарной скорости при добавках ингибиторов — ионола и 2-фенилиндандиона-1,3 (ФН). На рис. 3 представлены кинетические кривые уменьшения концентрации ПК в отсутствие ингибиторов (1) и при добавках ионов (2 и 3) и ФН (4). Видно, что начальная скорость реакции при всех концентрациях ингибиторов одинакова. В течение некоторого промежутка времени от начала процесса разложение ПК происходит в соответствии с кинетической кривой 5. Эта кинетическая кривая рассчитана по уравнению $C = C_0 \exp(-k_{\rm M}/t)$ при значении $k_{\rm M} = 3,8\cdot 10^{-3}$ мин⁻¹, полученном из данных рис. 2, и отражает расходование ПК в отсутствие индуцированного распада. Таким образом,

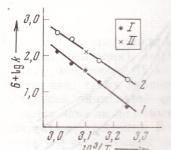


Рис. 4. Температурная зависимость кинетических нараметров $k_{\rm M}$ (1) и a (2); I и II — данные (4)

разложение ПК включает в своем механизме наличие отчетливо выраженного цепного направления.

По изменению $k_{\text{офф}}$ от начальной концентрации C_0 (аналогично рис. 2) были получены величины $k_{\text{м}}$ и a при различных температурах. На рис. 4 приведена температурная зависимость этих кинетических параметров, из которой следует, что $k_{\text{м}}$ и a равны:

Значение предэкспоненциального множителя для мономолекулярного распада ΠK , равное $k_0 = 10^{14,94}$, по порядку величины соответствует величинам k_0 для термического разложения

различных перекисей и азосоединений в жидкой фазе (12). Полученное значение энергии активации мономолекулярного процесса $E_{\rm M}=28,7$ ккал/моль близко к значению $E_{\rm M}$ для распада ПК в окисляющемся этилбензоле (5).

Своеобразная зависимость величины $k_{\text{офф}}$ от концентрации распадающегося инициатора может быть получена, если рассмотреть следующий механизм разложения, включающий гомолиз перекисной связи (реакция 0) и реакции свободных радикалов, образующихся в этом процессе.

0)
$$\Pi \stackrel{k_M}{\to} 2r$$
.
1) $\Pi \stackrel{k_1}{\to} r + +$
2) $R \stackrel{k_1'}{\to} r +$
3) $r + r \stackrel{k_2}{\to}$

Уравнение для скорости расходования ПК, полученное в предположении о квазистационарности по концентрации радикалов \mathbf{r}^{\bullet} и при $[\mathbf{r}^{\bullet}] \gg [\mathbf{R}^{\bullet}]$, имеет следующий вид;

$$-\frac{dC}{dt} = k_{\rm M}C + k_1 \sqrt{\beta k_{\rm M}/k_2} \cdot C^{*/2} = k_{\partial \phi \phi}C, \tag{2}$$

где $k_{2\Phi\Phi} = k_{\rm M} + k_{\rm H} \sqrt{C}$, $k_{\rm H} = k_{\rm I} \sqrt{\beta k_{\rm M}/k_{\rm B}}$, $k_{\rm H}$ — кинетический параметр, определяющий скорость цепного направления распада.

Однако эта схема позволяет описать кинетику процесса только в начальной стадии (вплоть до ¹/₃ глубины превращения). Необходимо уточнить этот механизм, с тем чтобы описать основную отличительную особенность, заключающуюся в соблюдении первого порядка по концентрации ПК вплоть до глубоких степеней превращения. Возможно, на глубоких стадиях реакцию ускоряют образующиеся продукты. Действительно, добавки продуктов — циклогексанона и циклогексанола — в количествах, соизмеримых с образующимися к концу реакции, приводят к ускорению процесса разложения ПК. Аналогичное действие циклогексанона на распад гидропереки-

си трет-бутила наблюдалось ранее (13). Следовательно, схема распада ПК должна быть дополнена элементарными стадиями, отражающими участие

продуктов реакции.

Таким образом, термическое разложение дициклогексилпероксидикарбоната в среде ароматического растворителя, не содержащего реакционноспособных С—Н-связей, представляет собой процесс, включающий мономо лекулярный гомолиз перекисной связи и цепное взаимодействие перекиси с образующимися свободными радикалами, осложненное влиянием конечных продуктов.

Институт химической физики Академии наук СССР Москва Поступило 6 IV 1973

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. А. Разуваев, Л. М. Терман, ЖОХ, № 30, 2387 (1960). ² Г. А. Разуваев, Л. М. Терман, В. А. Додонов, Журн. Всесоюзн. хим. общ., 11, 202 (1966). ³ Г. А. Разуваев, Л. М. Терман, Г. Петухов. ДАН, 136, 628 (1961). ⁴ Г. А. Разуваев, Л. М. Терман, Д. М. Яновский, ДАН, 161, 614 (1965). ⁵ З. И. Кулицки, Л. М. Терман идр., Изв. АН СССР, сер. хим., 1963, 253. ⁶ D. E. Van Sickle, J. Org. Chem., 34, 3446 (1969). ⁷ Е. Т. Денисов, Изв. АН СССР, сер. хим., 1963, 2037. ⁸ В. В. Моисеев, Л. П. Залукаев, Журн. орг. хим., 3, 734 (1967). ⁹ Е. R. Bell, J. H. Raley et al., Disc. Farad. Soc., № 10, 242 (1951). ¹⁰ К. Nozaki, P. D. Bartlett, J. Am. Chem. Soc., 68, 1686 (1946). ¹¹ S. G. Cohen, J. Am. Chem. Soc., 67, 17 (1945). ¹² Е. Т. Денисов, Константы скорости гомолитических жидкофазных реакций, «Наука», 1971. ¹³ Е. Т. Денисов, ДАН, 146, 394 (1962).