УДК 517.53

MATEMATUKA

И. И. БАВРИН

НЕКОТОРЫЕ КЛАССЫ ГАРМОНИЧЕСКИХ И АНАЛИТИЧЕСКИХ ФУНКЦИЙ И ИХ СТРУКТУРНОЕ ПРЕДСТАВЛЕНИЕ

(Представлено академиком М. А. Лаврентьевым 21 XII 1972)

В настоящей заметке дано полное структурное представление для вводимых здесь ассоциированных с оператором $N^{(\omega; \, \widetilde{\omega})}$ широких классов гармонических и аналитических функций. Эти классы являются существенным обобщением таких классов функций, как известного класса гармонических функций, совпадающего с множеством функций, представимых интегралом Пуассона — Стилтьеса (¹), классов аналитических функций, введенных Г. Герглотцем (²) и Ф. Риссом (³), соответствующих классов гармонических и аналитических функций, введенных М. М. Джрбашяном (⁴, ⁵). Указанные новые классы функций вводятся с помощью построенного в (⁶) оператора $N^{(\omega; \widetilde{\omega})}$ *, а основным аппаратом для установления структурных формул служат обобщенные интегральные формулы Пуассона и Шварца, ассоциированные с данными системами функций $\omega_1, \ldots, \omega_m$; $\widetilde{\omega}_1, \ldots, \widetilde{\omega}_{\widetilde{m}}$ **.

Обозначим через $U_{(\omega;\widetilde{\omega})}$ множество гармонических в круге |z|<1 функций u(z), удовлетворяющих условию

$$\sup_{0 < r < 1} \left\{ \int\limits_{0}^{2\pi} \mid N^{(\omega; \, \widetilde{\omega})} \left[u \left(r e^{\mathrm{i} \phi} \right) \right] \mid d\phi \right\} < + \infty.$$

Обозначим через $C_{(\omega;\widetilde{\omega})}$ класс аналитических в круге |z| < 1 функций f(z), удовлетворяющих условию

Re
$$N^{(\omega; \widetilde{\omega})}[f(z)] \geqslant 0$$
, $|z| < 1$.

Обозначим через $R_{(\omega \widetilde{\omega})}$ класс аналитических в круге |z| < 1 функций f(z), для которых выполняется условие

$$\sup_{0 < r < 1} \left\{ \int_{0}^{2\pi} |\operatorname{Re} N^{(\omega; \widetilde{\omega})}[f(re^{i\varphi})] | d\varphi \right\} < + \infty.$$

Так как при $f(z) \in C_{(\omega; \omega)}$ интегралы

$$\int_{0}^{2\pi} |\operatorname{Re}N^{(\omega;\widetilde{\omega})}[f(re^{i\varphi})]| d\varphi = \int_{0}^{2\pi} \operatorname{Re}N^{(\omega;\widetilde{\omega})}[f(re^{i\varphi})] d\varphi = 2\pi \operatorname{Re}f(0)$$

ограничены числом, не зависящим от r < 1, то, очевидно, имеем

$$C_{(\omega;\widetilde{\omega})} \subset R_{(\omega;\widetilde{\omega})}$$
.

Отметим следующие классы, вытекающие из определения классов $U_{(\omega;\,\widetilde{\omega})}$, $C_{(\omega;\,\widetilde{\omega})}$, $R_{(\omega;\,\widetilde{\omega})}$.

** О других обобщенных формулах см., например, в (4, 5, 7).

^{*} Напомним, что здесь и всюду ниже $\omega = (\omega_1, \ldots, \omega_m), \ \widetilde{\omega} = (\widetilde{\omega_1}, \ldots, \widetilde{\omega_{\widetilde{m}}});$ $\omega_j = \omega_j(x) \in \Omega, \ \widetilde{\omega_j} = \widetilde{\omega_j}(x) \in \Omega, \ j = 1, \ldots, m; \ \widetilde{j} = 1, \ldots, \widetilde{m}.$

1) $\omega = (1, ..., 1)$, $\widetilde{\omega} = (1, ..., 1)$. При таком условии имеем известные три класса. Представление первого из них хорошо известно (1), а представления двух других классов были впервые получены в (2, 3).

2) $\omega = ((1-x)^{\alpha}, 1, \ldots, 1), \ \widetilde{\omega} = (1, \ldots, 1), \ -1 < \alpha < +\infty$. В этом случае получаем классы функций, введенные в (4), где установлены и их

представления.

3) $\omega = (\omega_1, 1, ..., 1), \widetilde{\omega} = (1, ..., 1),$ где $\omega_1 = \omega_1(x)$ — любая функция из класса Ω. При этом условии получим классы функций, рассмотренные в (⁵), где найдены и их представления. Представления классов $U_{(\omega;\widetilde{\omega})},\ C_{(\omega;\widetilde{\omega})},\ R_{(\omega;\widetilde{\omega})}$ даются в следующих теоремах 1 и 2. Теорема 1. а) Класс $U_{(\omega;\widetilde{\omega})}$ совпадает с множеством функций u(z),

представимых в виде интеграла

$$u\left(re^{i\varphi}\right) = \frac{1}{2\pi} \int_{0}^{2\pi} N^{(\widetilde{\omega}:\,\omega)} \left[P\left(\varphi - \theta, r\right)\right] d\psi\left(\theta\right) \tag{1}$$

 $(0 \le r < 1, 0 \le \varphi \le 2\pi)$, где $\psi(\theta)$ — произвольная вещественная функция

с конечным полным изменением на $[0, 2\pi]$.

б) B представлении (1) данной функции $u(z) \in U_{(\omega; \omega)}$ соответствующая функция $\psi(\theta)$ может быть определена с помощью предела

$$\psi(\theta) = \lim_{n \to +\infty} \int_{0}^{\theta} N^{(\omega; \widetilde{\omega})} \left[u \left(\rho_{n} e^{i\varphi} \right) \right] d\varphi,$$

 $\partial e \{\rho_n\}, 0 < \rho_1 < \rho_2 < \ldots < \rho_n < \ldots, \rho_n \uparrow 1,$ — некоторая возрастающая последовательность.

в) Класс $U_{(\omega;\,\widetilde{\omega})}^* \subset U_{(\omega;\,\widetilde{\omega})}$ гармонических в круге |z| < 1 функций u(z), для которых $N^{(\omega, \omega)}[u(z)]\geqslant 0, \ |z|<1$, совпадает с множеством функций, представимых в виде (1), где функция $\psi(\theta)$ не убывает на $[0, 2\pi]$.

T е о р е м а 2. а) Kласс $C_{(w, w)}$ совпадает с множеством функций f(z),

представимых в виде

$$f(z) = iC + \frac{1}{2\pi} \int_{0}^{2\pi} N^{(\widetilde{\omega}; \omega)} \left[S\left(e^{-i\theta} z \right) \right] d\psi(\theta), \quad |z| < 1, \tag{2}$$

 $c\partial e \operatorname{Im} C = 0$, $\psi(\theta) - n$ роизвольная неубывающая ограниченная функция на $[0, 2\pi]$.

б) Класс $R_{(\omega;\widetilde{\omega})}$ совпадает с множеством функций, представимых в виде (2), $z \partial e \psi(\theta)$ — вещественная функция с конечным изменением на $[0, 2\pi]$.

В процессе доказательства теоремы 1 существенно используется указанная выше обобщенная формула Пуассона, а при доказательстве теоремы 2 кроме отмеченной обобщенной формулы Шварца - теорема 1 данной заметки.

Московский областной педагогический институт им. Н. К. Крупской

Поступило 15 XII 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. И. Привалов, Граничные свойства аналитических функций, М.— Л., 1950.
² G. Herglotz, Leipzig Ber., 63, 501 (1911). ³ F. Riez, Ann. Norm., 28 (3), 34 (1911).
⁴ М. М. Джрбашян, Интегральные преобразования и представления функций в комплексной области, М., 1966. ⁵ М. М. Джрбашян, Изв. АН СССР, сер. матем., 32, № 5, 1075 (1968). ⁶ И. И. Баврин, ДАН, 204, № 4 (1972). ⁷ И. И. Баврин, В сборн. тр. Теория функций, функциональный анализ и их приложения, М., в. 15, 3 (4073). 3 (1973).